
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Boot Script Specification

Draft for Review

Version 0.91
April 1, 2004

Boot Script Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2001–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 September 2003 iii

Revision History
Revision Revision History Date

0.9 First public release. 9/16/03

0.91 Removed SMBus type definitions from
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE and inserted
pointers to the definitions in the SMBus PPI Specification.

4/1/04

http://ssg.intel.com/tiano/mergedProjects/BootScript/Code_Definitions/EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE.htm
http://ssg.intel.com/tiano/mergedProjects/SmbusPpi/Boilerplate/Title_Page.htm

Boot Script Specification Draft for Review

iv September 2003 Version 0.9

 Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction .. 7
Overview ... 7
Requirements.. 7
Conventions Used in This Document.. 8

Data Structure Descriptions ... 8
Protocol Descriptions ... 9
Procedure Descriptions.. 9
PPI Descriptions... 10
Pseudo-Code Conventions .. 10
Typographic Conventions... 11

2 Design Discussion ... 13
Framework Boot Script..13
Boot Script Usage Model .. 14
Role of Boot Script in S3 Resume Boot Path.. 14

3 Code Definitions... 15
Introduction ... 15
Boot Script Save Protocol ... 16

EFI_BOOT_SCRIPT_SAVE_PROTOCOL... 16
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write()... 17
Opcodes for Write() .. 20

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE... 20
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE..................................... 22
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE .. 24
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE 26
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 28
EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 30
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE 32
EFI_BOOT_SCRIPT_STALL_OPCODE ... 34
EFI_BOOT_SCRIPT_DISPATCH_OPCODE.. 35

EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable() ... 36
Boot Script Executer ... 37
Boot Script Executer ... 37

EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI ... 37
EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI.Execute()... 39

Boot Script Specification Draft for Review

vi September 2003 Version 0.9

Figures
Figure 2-1. Boot Script Usage Model .. 14
Figure 2-2. Role of Boot Script Usage in S3 Resume Boot Path .. 14

Tables
Table 3-1. Opcode PPI Dependencies.. 37

 Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
boot script in the Intel® Platform Innovation Framework for EFI (hereafter referred to as the
“Framework”). The Framework boot script is a script into which configuration information about
the platform is recorded for use during different boot paths. This specification does the following:
• Describes the mechanism that is used to execute and record the boot script
• Provides code definitions for various boot scripts that are architecturally required by the Intel®

Platform Innovation Framework for EFI Architecture Specification

Requirements
This Framework boot script design must meet the following requirements:
• All aspects of this design must comply with the following:

⎯ Intel® Platform Innovation Framework for EFI Architecture Specification
⎯ Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface

Specification (PEI CIS)
⎯ Intel® Platform Innovation Framework for EFI Driver Execution Environment Core

Interface Specification (DXE CIS)
⎯ ACPI 2.0 specification

• The design must enable size efficiency, code reuse, and maintainability.

Boot Script Specification Draft for Review

8 September 2003 Version 0.9

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

 Draft for Review Introduction

Version 0.9 September 2003 9

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Boot Script Specification Draft for Review

10 September 2003 Version 0.9

PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

PPI Interface Structure: A “C-style” procedure template defining the PPI calling
structure.

Parameters: A brief description of each field in the PPI structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller
should be aware.

Related Definitions: The type declarations and constants that are used only by
this interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI
is required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

 Draft for Review Introduction

Version 0.9 September 2003 11

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

http://www.intel.com/technology/framework/spec.htm

Boot Script Specification Draft for Review

12 September 2003 Version 0.9

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 September 2003 13

2
Design Discussion

Framework Boot Script
The Framework boot script is intended to generalize the process of platform initialization in that it
can be viewed as a sequence of the following:
• Accessing the I/O, memory, and PCI configuration space
• Executing specific microprocessor instructions
The Framework boot script is especially useful in a resume from the Advanced Configuration and
Power Interface (ACPI) S3 system sleep state. During a normal boot, the Framework initializes the
platform in a phased fashion. In the Pre-EFI Initialization (PEI) phase, the Framework initializes
the platform with enough configurations to allow execution of the Driver Execution Environment
(DXE) phase. During the DXE phase, numerous DXE drivers collectively continue to configure the
platform to a final preboot state. In contrast, in the ACPI resume boot path, the Framework needs to
restore configuration done in both the PEI and DXE phases.
However, it is not effective to make the DXE phase aware of the boot path because the time that
is allotted to complete an S3 resume is very constrained; Microsoft* requires 0.5 seconds. To avoid
the DXE phase in an S3 resume, various chipset drivers record information on the following as a
boot script:
• I/O
• PCI
• Memory
• System Management Bus (SMBus)
• Other specific operations or routines that are necessary to restore the chipset and

processor configuration
This boot script can be copied into a nonvolatile storage (NVS) memory region. When the system
wakes up and runs the S3 resume boot path, a boot script engine Pre-EFI Initialization Module
(PEIM) is able to execute the boot script to restore the configuration done in the previous
DXE phase.
See the next topics for figures showing how the boot script works in a normal boot path and during
an S3 resume.

Boot Script Specification Draft for Review

14 September 2003 Version 0.9

Boot Script Usage Model
The figure below shows how the boot script works in a normal boot path and during an S3 resume.

DXE chipset Driver
in normal boot

path

EFI_BOOT_SCRI
PT_SAVE_PROT

OCOL

EFI Boot Script
Table stored in

ACPI NVS
memory

Boot Script Engine
PEIM in S3

resume boot path

Call

Produce

Execute

Figure 2-1. Boot Script Usage Model

Role of Boot Script in S3 Resume Boot Path
The figure below shows the role of the boot script and the boot script table in a normal boot path
and the S3 resume boot path.

SEC PEI DXE BDS

SEC

PEI(S3 aware
PEM to restore

PEI phase
configuration)

Boot Script
PEIM to

restore DXE
phase

configuration

os loadNormal Boot

S3 Resume

Boot Script
Table in ACPI

NVS

Save

Execute

OS waking Vector

Figure 2-2. Role of Boot Script Usage in S3 Resume Boot Path

 Draft for Review

Version 0.9 September 2003 15

3
Code Definitions

Introduction
This section contains the basic definitions for storing firmware volumes in block access type
devices. The following protocols, PPIs, and their respective member functions are defined in
this section:
• EFI_BOOT_SCRIPT_SAVE_PROTOCOL
• EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in “Related Definitions” of the parent data structure, protocol, or function definition:
• EFI_ACPI_S3_RESUME_SCRIPT_TABLE
• Boot script opcode definitions
• EFI_BOOT_SCRIPT_WIDTH

(Note: The last three bullets that were in the second bulleted list in the 0.9 version were deleted for
the 0.91 version.)

Boot Script Specification Draft for Review

16 September 2003 Version 0.9

Boot Script Save Protocol

EFI_BOOT_SCRIPT_SAVE_PROTOCOL

Summary
Used to store or record various boot scripts into boot script tables.

GUID
#define EFI_BOOT_SCRIPT_SAVE_GUID \
{ 0x470e1529, 0xb79e, 0x4e32, 0xa0, 0xfe, 0x6a,0x15, 0x6d, 0x29,
0xf9, 0xb2 }

Protocol Interface Structure
typedef struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL {
 EFI_BOOT_SCRIPT_WRITE Write;
 EFI_BOOT_SCRIPT_CLOSE_TABLE CloseTable;
} EFI_BOOT_SCRIPT_SAVE_PROTOCOL;

Parameters
Write

Writes various boot scripts to a boot script table. See the Write() function
description.

CloseTable

Retrieves and closes a script table. See the CloseTable() function description.

Description
The EFI_BOOT_SCRIPT_SAVE_PROTOCOL publishes the Framework boot script abstractions.
This protocol is not required for all platforms.
This protocol allows different drivers to record boot scripts. There are different types of boot
scripts, which are then grouped into tables. Currently the only meaningful table is for the
S3 resume boot path. The implementer can also choose to hide this protocol behind a DXE library.

 Draft for Review Code Definitions

Version 0.9 September 2003 17

EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write()

Summary
Adds a record into a specified Framework boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value is
EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related
Definitions” below.

OpCode

The operation code (opcode) number. See “Related Definitions” below for
the defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections
for the definition of each opcode.

Description
This function is used to store a boot script record into a given boot script table. If the table specified
by TableName is nonexistent in the system, a new table will automatically be created and then
the script record will be added into the new table. A boot script table can add new script records
until EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable() is called. Currently, the only
meaningful table name is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. This function is
responsible for allocating necessary memory for the script.
This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.
If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

Boot Script Specification Draft for Review

18 September 2003 Version 0.9

Related Definitions
//***
// EFI_ACPI_S3_RESUME_SCRIPT_TABLE
//***

#define EFI_ACPI_S3_RESUME_SCRIPT_TABLE 0x00

//***
// EFI Boot Script Opcode definitions
//***

 NOTE
Click the links in the #define statements below to jump to the Write() function description for
that opcode.

#define EFI_BOOT_SCRIPT_IO_WRITE_OPCODE 0x00
#define EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE 0x01
#define EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE 0x02
#define EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE 0x03
#define EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 0x04
#define EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 0x05
#define EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE 0x06
#define EFI_BOOT_SCRIPT_STALL_OPCODE 0x07
#define EFI_BOOT_SCRIPT_DISPATCH_OPCODE 0x08

//***
// EFI_BOOT_SCRIPT_WIDTH
//***

typedef enum {
 EfiBootScriptWidthUint8,
 EfiBootScriptWidthUint16,
 EfiBootScriptWidthUint32,
 EfiBootScriptWidthUint64,
 EfiBootScriptWidthFifoUint8,
 EfiBootScriptWidthFifoUint16,
 EfiBootScriptWidthFifoUint32,
 EfiBootScriptWidthFifoUint64,
 EfiBootScriptWidthFillUint8,
 EfiBootScriptWidthFillUint16,
 EfiBootScriptWidthFillUint32,
 EfiBootScriptWidthFillUint64,
 EfiBootScriptWidthMaximum
} EFI_BOOT_SCRIPT_WIDTH;

 Draft for Review Code Definitions

Version 0.9 September 2003 19

Status Codes Returned
EFI_SUCCESS The operation succeeded. A record was added into the

specified script table.

EFI_INVALID_PARAMETER The parameter is illegal or the given boot script is not supported.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

Boot Script Specification Draft for Review

20 September 2003 Version 0.9

Opcodes for Write()

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE

Summary
Adds a record for an I/O write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_WRITE_OPCODE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
 Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The base address of the I/O operations.

 Draft for Review Code Definitions

Version 0.9 September 2003 21

Count

The number of I/O operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write data. The buffer size is
Width size * Count.

Description
This function adds an I/O write record into a specified boot script table. On script execution, this
operation writes the presaved value into the specified I/O ports.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

22 September 2003 Version 0.9

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE

Summary
Adds a record for an I/O modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in “Related
Definitions” in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The base address of the I/O operations.
Data

A pointer to the data to be OR-ed.
DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

 Draft for Review Code Definitions

Version 0.9 September 2003 23

Description
This function adds an I/O read and write record into the specified boot script table. When the script
is executed, the register at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

24 September 2003 Version 0.9

EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE

Summary
Adds a record for a memory write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE is defined in “Related Definitions”
in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
 Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

 Draft for Review Code Definitions

Version 0.9 September 2003 25

Count

The number of memory operations to perform. The number of bytes moved is
Width size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is
Width size * Count.

Description
This function adds a memory write record into a specified boot script table. When the script is
executed, this operation writes the presaved value into the specified memory location.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

26 September 2003 Version 0.9

EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE

Summary
Adds a record for a memory modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in “Related
Definitions” in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.
Data

A pointer to the data to be OR-ed.
DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

 Draft for Review Code Definitions

Version 0.9 September 2003 27

Description
This function adds a memory read and write record into a specified boot script table. When the
script is executed, the memory at Address is read, AND-ed with DataMask, and OR-ed with
Data, and finally the result is written back.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

28 September 2003 Version 0.9

EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
)

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value is
EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions”
in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in “Related
Definitions” in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

 Draft for Review Code Definitions

Version 0.9 September 2003 29

Count

The number of PCI operations to perform. The number of bytes moved is
Width size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size
* Count.

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

30 September 2003 Version 0.9

EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
)

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value is
EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
“Related Definitions” in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

A pointer to the data to be OR-ed. The size depends on Width.
DataMask

A pointer to the data mask to be AND-ed.

 Draft for Review Code Definitions

Version 0.9 September 2003 31

Description
This function adds a PCI configuration read and write record into a specified boot script table.
When the script is executed, the PCI configuration space location at Address is read, AND-ed
with DataMask, and OR-ed with, and finally the result is written back.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

32 September 2003 Version 0.9

EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE

Summary
Adds a record for an SMBus command execution into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN UINTN *Length,
 IN VOID *Buffer
)

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE. Type
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE is defined in “Related
Definitions” in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

SlaveAddress

The SMBus address for the slave device that the operation is targeting. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

 Draft for Review Code Definitions

Version 0.9 September 2003 33

Command

The command that is transmitted by the SMBus host controller to the SMBus slave
device. The interpretation is SMBus slave device specific. It can mean the offset to a
list of functions inside an SMBus slave device. Type
EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Operation

Indicates which particular SMBus protocol it will use to execute the SMBus
transactions. Type EFI_SMBUS_OPERATION is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.
Length

A pointer to signify the number of bytes that this operation will do.
Buffer

Contains the value of data to execute to the SMBUS slave device.

Description
This function adds an SMBus command execution record into a specified boot script table. When
the script is executed, this operation executes a specified SMBus command.

(Note: The “Related Definitions” subsection and the type definitions for
EFI_SMBUS_DEVICE_ADDRESS, EFI_SMBUS_DEVICE_COMMAND, and
EFI_SMBUS_OPERATION were deleted for the 0.91 version.)

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

34 September 2003 Version 0.9

EFI_BOOT_SCRIPT_STALL_OPCODE

Summary
Adds a record for an execution stall on the processor into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN UINTN Duration
)

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value is
EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions”
in EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_STALL_OPCODE. Type
EFI_BOOT_SCRIPT_STALL_OPCODE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

Duration

Duration in microseconds of the stall.

Description
This function adds a stall record into a specified boot script table. When the script is executed, this
operation will stall the system for Duration number of microseconds.

Status Codes Returned
See “Status Codes Returned” in Write().

 Draft for Review Code Definitions

Version 0.9 September 2003 35

EFI_BOOT_SCRIPT_DISPATCH_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint
)

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the script table. Currently, the only meaningful value
is EFI_ACPI_S3_RESUME_SCRIPT_TABLE. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in “Related Definitions” in
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the EFI 1.10 Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table. If the codes to be
dispatched have dependencies on other PPIs or codes, the caller should guarantee that all
dependencies are sufficient before dispatching the codes.

Status Codes Returned
See “Status Codes Returned” in Write().

Boot Script Specification Draft for Review

36 September 2003 Version 0.9

EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable()

Summary
Closes the specified script table.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BOOT_SCRIPT_CLOSE_TABLE) (
 IN struct _EFI_BOOT_SCRIPT_SAVE_PROTOCOL *This,
 IN UINT16 TableName,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Parameters
This

A pointer to the EFI_BOOT_SCRIPT_SAVE_PROTOCOL instance.
TableName

Name of the table.
Address

A pointer to the physical address where the table begins. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Description
This function closes the specified boot script table and returns the base address of the table. It
allocates a new pool to duplicate all the boot scripts in the specified table. Once this function is
called, the specified table will be destroyed after it is copied into the allocated pool. As a result,
any attempts to add a script record into a closed table will cause a new table to be created. The base
address of the allocated pool will be returned in Address. After using the boot script table, the
caller is responsible for freeing the pool that is allocated by this function. If the boot script table,
such as EFI_ACPI_S3_RESUME_SCRIPT_TABLE, is required to be stored in a nonperturbed
memory region, the caller should copy the table into the nonperturbed memory region by itself.

Status Codes Returned
EFI_SUCCESS The table was successfully returned.

EFI_NOT_FOUND The specified table was not created previously.

EFI_OUT_OF_RESOURCES Memory is insufficient to hold the reorganized boot script table.

 Draft for Review Code Definitions

Version 0.9 September 2003 37

Boot Script Executer

EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI

Summary
This PPI produces functions to interpret and execute the Framework boot script table.

GUID
#define EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI_GUID \

{ 0xabd42895, 0x78cf, 0x4872, 0x84, 0x44, 0x1b, 0x5c, 0x18,
0x0b, 0xfb, 0xff }

PPI Interface Structure
typedef struct _EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI {
 EFI_PEI_BOOT_SCRIPT_EXECUTE Execute;
} EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI;

Parameters
Execute

Executes a boot script table. See the Execute() function description.

Description
This PPI is published by a PEIM upon dispatch and provides an execution engine for the
Framework boot script. This PEIM should be platform neutral and have no specific knowledge of
platform instructions and other information. The ability to interpret the boot script depends on the
abundance of other PPIs that are available. For example, if the script requests an SMBus command
execution, the PEIM looks for a relevant PPI that is available to execute it, rather than executing it
by issuing the native IA-32 instruction.
The table below lists the PPIs on which each opcode directly depends.

Table 3-1. Opcode PPI Dependencies

Boot Script Opcode Dependency

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE EFI_PEI_CPU_IO_PPI

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE EFI_PEI_CPU_IO_PPI

EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE EFI_PEI_CPU_IO_PPI

EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE EFI_PEI_CPU_IO_PPI

EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE EFI_PEI_PCI_CFG_PPI

EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE EFI_PEI_PCI_CFG_PPI

EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE EFI_PEI_SMBUS_PPI

EFI_BOOT_SCRIPT_STALL_OPCODE EFI_PEI_STALL_PPI

EFI_BOOT_SCRIPT_DISPATCH_OPCODE Uncertain

Boot Script Specification Draft for Review

38 September 2003 Version 0.9

For more information on these dependencies, please see the following specifications:
• Definitions of EFI_PEI_CPU_IO_PPI, EFI_PEI_PCI_CFG_PPI, and

EFI_PEI_STALL_PPI:
Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface
Specification (PEI CIS)

• Definition of EFI_PEI_SMBUS_PPI: Intel® Platform Innovation Framework for EFI SMBus
PPI Specification

 Draft for Review Code Definitions

Version 0.9 September 2003 39

EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI.Execute()

Summary
Executes the Framework boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PEI_BOOT_SCRIPT_EXECUTE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI *This,
 IN EFI_PHYSICAL_ADDRESS Address
 IN EFI_GUID *FvFile OPTIONAL
);

Parameters
PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

This

A pointer to the EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI instance.
Address

The physical memory address where the table is stored. It must be zero if the table to
be executed is stored in a firmware volume file. Type EFI_PHYSICAL_ADDRESS
is defined in AllocatePages() in the EFI 1.10 Specification.

FvFile

The firmware volume file name that contains the table to be executed. It must be
NULL if the table to be executed is stored in physical memory. Type EFI_GUID is
defined in InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This function executes a Framework boot script table. The boot scripts are recorded using the
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write() function, and the entire table can be
retrieved using the EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable() function. This
function interprets every boot script in the table upon the opcode and performs the operation that
the boot script requires by calling the appropriate PPI. The caller should ensure that all dependent
PPIs and codes to be dispatched are available in memory before calling this function.

Boot Script Specification Draft for Review

40 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The boot script table was executed successfully.

EFI_INVALID_PARAMETER Address is zero and FvFile is NULL.

EFI_NOT_FOUND The file name specified in FvFile cannot be found.

EFI_UNSUPPORTED The format of the boot script table is invalid.

EFI_UNSUPPORTED An unsupported opcode occurred in the table.

EFI_UNSUPPORTED There were opcode execution errors, such as an insufficient
dependency.

	Intel® Platform Innovation Framework for EFI Boot Script Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Requirements
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	PPI Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Framework Boot Script
	Boot Script Usage Model
	Role of Boot Script in S3 Resume Boot Path

	3. Code Definitions
	Introduction
	Boot Script Save Protocol
	EFI_BOOT_SCRIPT_SAVE_PROTOCOL
	EFI_BOOT_SCRIPT_SAVE_PROTOCOL.Write()
	Opcodes for Write()
	EFI_BOOT_SCRIPT_IO_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE
	EFI_BOOT_SCRIPT_STALL_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_OPCODE

	EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable()

	Boot Script Executer
	EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI
	EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI.Execute()

