Building Intel® Atom™ E3800 Processor Development Kit Yocto Project* Board Support Package (BSP)

User Guide

June 2014
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Atom, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.
Contents

1 Introduction .. 5
 1.1 Terminology ... 5
 1.2 Reference Documents ... 6
2 Supported Platforms .. 7
3 Building the Image for Valley Island Yocto Project* Board Support Package (BSP) 8
 3.1 Prerequisites .. 8
 3.2 Steps for Building the Image .. 8
 3.2.1 Step 1: Set Up the Build Environment for the Target BSP 8
 3.2.2 Step 2: Setup the Build Configuration Files – bblayers.conf 9
 3.2.3 Step 3: Set Up the Build Configuration Files – local.conf 10
 3.2.4 Step 4: Build an Image ... 11
 3.2.5 Step 5: Prepare the Bootable HDDIMG Image on a USB Mass Storage Device ... 12
4 BIOS and Board Configuration .. 14
5 Product features ... 16
6 Known Issues for LPSS I/O Devices ... 17

Figures

Figure 1. Modifications to bblayers.conf .. 9
Figure 2. Modification to Local Build Configuration File for Machine Type 10

Tables

Table 1. Terminology ... 5
Table 2. Reference Documents .. 6
Table 3. BIOS and Board Configuration ... 14
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2014</td>
<td>001</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

§
1 Introduction

This document provides instructions for building the Yocto Project* Reference OS for the Intel® Atom™ E3800 Processor Development Kit (formerly known as Valley Island) and contains the following information:

Section 1: Introduction
Section 2: Supported Platforms
Section 3: Building the Image for Valley Island Yocto Project* Board Support Package (BSP)
Section 4: BIOS and Board Configuration
Section 5: Product features
Section 6: Known Issues for LPSS I/O Devices

For more information about Baytrail product info, refer to the EDC webpage at:

1.1 Terminology

Table 1. Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPI</td>
<td>Advanced Configuration and Power Interface</td>
</tr>
<tr>
<td>APIC</td>
<td>Advanced Programmable Interrupt Controller</td>
</tr>
<tr>
<td>BSP</td>
<td>Board Support Package</td>
</tr>
<tr>
<td>EDC</td>
<td>Embedded Design Center</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>KSC</td>
<td>Keyboard System Controller</td>
</tr>
<tr>
<td>LPSS</td>
<td>Low Power Sub-System</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width modulation</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>SCC</td>
<td>Storage Connecting Circuit</td>
</tr>
<tr>
<td>SUT</td>
<td>System Under Test</td>
</tr>
</tbody>
</table>
1.2 Reference Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Document No./Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yocto Project* Setup Getting Started Guide</td>
<td>330696</td>
</tr>
</tbody>
</table>

§
2 Supported Platforms

The Yocto Project* Reference OS for Valley Island supports the following platforms:
- Bayley Bay Fab C (Green)
- Bakersport Fab A (Red)
- Valley Island Development Kit*

Note: * Minimal test coverage (Boot test).
3 Building the Image for Valley Island Yocto Project* Board Support Package (BSP)

3.1 Prerequisites

Prior to building the image for Valley Island Yocto Project* Intel BSP, make sure that the environment setup is complete based on the steps in the Yocto Project* Setup Getting Started Guide (Document Number: 330696).

3.2 Steps for Building the Image

Now that the Yocto Project* poky repo and meta-intel repo are ready in your build machine, follow the steps in this section closely.

Intel recommends that you place your build folder at the same level as the poky directory. This shortens the grep and find command execution time when you explore the Yocto Project* recipe files.

3.2.1 Step 1: Set Up the Build Environment for the Target BSP

Enter the following commands:

```
$ cd ~/development/
$ mkdir build
$ cd build
$ source ~/development/poky/oe-init-build-env <bsp_name>
```

The environment is set up and your shell prompt is moved to

```
~/development/build/<bsp-name>.
```

Example:

```
$ source ~/development/poky/oe-init-build-env valleyisland
```
3.2.2 Step 2: Setup the Build Configuration Files – bblayers.conf

Now you must link your build environment to the correct recipe folder. To do this, perform the following steps:

1. Modify the ~/development/build/<bsp-name>/conf/bblayers.conf file.

 $ vim ~/development/build/valleyisland/conf/bblayers.conf

2. Modify the bblayers.conf as shown Figure 1.

 Figure 1. Modifications to bblayers.conf

   ```
   # LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
   # changes incompatibly
   LCONF_VERSION = "6"

   BBPATH = "$(@TOPDIR)"
   BBFILES := ""

   BBLAYERS := "\n   /home/ilab/poky-daisy/meta \n   /home/ilab/poky-daisy/meta-yocto \n   /home/ilab/poky-daisy/meta-yocto-bsp \n   /home/ilab/poky-daisy/meta-intel \n   /home/ilab/poky-daisy/meta-intel/meta-islg/meta-valleyisland \n   /home/ilab/poky-daisy/meta-intel/meta-tlk \n   "
   BBLAYERS_NON_REMOVABLE := "\n   /home/ilab/poky-daisy/meta \n   /home/ilab/poky-daisy/meta-yocto \n   "
   ```

 Note: The path to meta-tlk ensures that the OS image you are building carries the time-limited-kernel feature. This means that the OS image will reboot itself every 10 days. The intention is to encourage customers to build their own production OS.

 If you do not want this feature, simply remove line-14 (see the following note).

 Note: /home/ilab/poky-daisy should be replaced with your build machine user’s home directory, e.g. /home/<user>/development/poky.
3.2.3 **Step 3: Set Up the Build Configuration Files – local.conf**

Next, configure your local build configuration file (local.conf) so that it matches your target platform machine type.

```
$ vim ~/development/build/valleyisland/conf/local.conf
```

Specify the machine type to match your target platform. You can search for the offered machine type in the following meta-intel BSP directory structure:

The machine type configuration file is at the following local within a BSP recipe: meta-intel/meta-<bsp>/conf/machine/<machine-type>.conf.

For example: meta-intel/meta-isg/meta-valleyisland/machine/ has the following machine type:

- valleyisland-32.conf
- valleyisland-64.conf

Thus, to set the machine type for your local build configuration file, simply make the following change:

Figure 2. Modification to Local Build Configuration File for Machine Type

```bash
# # Machine Selection
# # You need to select a specific machine to target the build with. There are a selection
# of emulated machines available which can boot and run in the QEMU emulator:
# #
# MACHINE ?= "qemuarm"
# MACHINE ?= "qemumips"
# MACHINE ?= "qemu686"
# MACHINE ?= "qemux86-64"
# # There are also the following hardware board target machines included for demonstration purposes:
# #
# MACHINE ?= "atom-pc"
# MACHINE ?= "beagleboard"
# MACHINE ?= "mpc8315e-rdb"
# MACHINE ?= "routerstationpro"
# # This sets the default machine to be qemux86 if no other machine is selected:
# MACHINE ??= "valleyisland-32"
```

There are two types of “MACHINE” options for Valley Island BSP.

- For 32-bit system: valleyisland-32
- For 64-bit system: valleyisland-64
Building the Image for Valley Island Yocto Project* Board Support Package (BSP)

The meta-valleyisland contains support Intel® High Definition Audio (Intel® HD Audio). However, Intel® HD Audio support is not turned on by default. The Intel® HD Audio driver is dependent on gstreamer plugins and ffmpeg plugins to work properly. These gstreamer plugins require additional license flag settings to be included in the build.

For Intel® HD Audio support, add the following line in local.conf.

```
LICENSE_FLAGS_WHITELIST = "commercial"
```

Warning: By performing this step, you acknowledge that you are including a software package with a commercial license requirement. Yocto Project* does not grant any commercial licenses and it is the responsibility of the user to obtain the proper license.

3.2.4 Step 4: Build an Image

There are a few images that you can build with an Intel BSP recipe and poky layers. These image types are located under the `poky/meta/recipes-*/*/images/` folder.

Additionally, some BSP recipes may have a specific image type defined under `meta-intel/meta-<bsp>/images/`.

The most frequently used image types are the following:

- **core-image-sato** = Image contains Sato mobile-style desktop
- **core-image-sato-sdk** = core-image-sato + SDK + development tool chain
- **core-image-minimal** = basic Linux* kernel with shell terminal only

To build your choice of image, do the following:

```
$ cd ~/development/build/valleyisland
# Command: bitbake <image-type>
$ bitbake core-image-sato
```

OR

```
$ bitbake core-image-sato-sdk
```

OR

```
$ bitbake core-image-minimal
```

The above command initiates the image-build processes; where you see `bitbake`, the build system spawns multiple threads to fetch, configure, compile, install, and package each software ingredients.
At the end of the build, the bootable image with the file name `<image-type>-<machine-type>.hddimg` will be located at the following location for Yocto Project* version 1.5 and later:

`~/development/build/<bsp-name>/tmp/deploy/images/<machine-type>/<image-type>-<machine-type>.hddimg`

Example:

`~/development/build/crystalforest/tmp/deploy/images/valleyisland-32/core-image-sato-valleyisland-32.hddimg`

3.2.5 Step 5: Prepare the Bootable HDDIMG Image on a USB Mass Storage Device

Note: The following steps are performed on the development machine used to build the Yocto Project* Intel BSP recipe as described in Section 3.2.4.

This BSP recipe contains (or builds) live images that must be converted to a partitioned image format to boot them on the supported platforms.

To deploy the hddimg image on a USB or SATA device (boot-medium), you must know the device name on your host machine and the device name that is intended on the target platform.

Warning: Be careful with this step as using the wrong host device path can result in overwriting data on your host machine.

In Linux* distros, USB and SATA devices typically appear as `/dev/sdb`, `/dev/sdc`, etc. Watch your system messages as you connect the device to determine exactly which device name is assigned to the device. You can also use `df` to detect which is the device that is associated with the USB or SATA boot-medium.

On the Valley Island platform, when the prepared boot-medium is attached, assuming only one storage device, typically your USB or SATA boot medium is `/dev/sda`.
There is a script under poky/scripts/contrib that can help install the HDDIMG into the USB stick.

1. Enter the following command lines:

   ```
   # Identify the device file for your USB thumb drive.
   $ df
   # To write the bootable image to USB thumb drive, we assume it is at /dev/sdc.
   # Unmount the the USB thumb drive first.
   $ umount /dev/sdc
   
   # Go to the scripts directory in poky.
   $ cd ~/development/poky/scripts/contrib/
   # Command: ./mkefidisk.sh <USB> <path/to/image>
   <target/rootfs>
   
   Example:
   
   $ sudo ./mkefidisk.sh /dev/sdc core-image-sato-valleyisland-32.hddimg /dev/sda
   ```

2. Finally, insert the USB thumb drive in your target platform USB slot and boot up the system. The BIOS or boot-loader should boot the image to the Sato desktop.

 Note: If your BIOS indicates that it cannot understand the bootable USB, it may mean that your USB thumb drive is corrupt. In this case, you must reformat the USB thumb drive as follow and redo the commands in this section:

   ```
   # This assumes the USB thumb drive is at /dev/sdc
   $ sudo dd if=/dev/zero of=/dev/sdc bs=1M count=512
   ```
BIOS and Board Configuration

Table 3. BIOS and Board Configuration

<table>
<thead>
<tr>
<th>BIOS/FPGA/KSC Configuration</th>
<th>Bayley Bay Fab C</th>
<th>Bakersport Fab A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU Stepping</td>
<td>B0</td>
<td></td>
</tr>
<tr>
<td>BIOS version</td>
<td>BYTICRB_IA32_R_SPI_0080_21_Sec_Enable.bin</td>
<td>BYTICRB_X64_R_SPI_0080_21_Sec_Enable.bin</td>
</tr>
<tr>
<td>KSC Version</td>
<td>ksc_v3_12.bin</td>
<td></td>
</tr>
</tbody>
</table>

General Settings
- Turn off Secure Boot
- Device Manager > System Setup > Boot > Security Boot > Disable

LPSS and SCC configuration
- **IMPORTANT** The LPSS & SCC mode is PCI Mode by default in the BIOS setting.
- To enable PCI/ACPI mode:
 - Device Manager > System Setup > South Cluster Configuration > LPSS & SCC Configuration > LPSS & SCC Devices Mode (select ACPI Mode or PCI Mode)
- The eMMC controller v4.5 is enabled by default. To switch to eMMC controller v4.41:
 - Device Manager > System Setup > South Cluster Configuration > LPSS & SCC Configuration > SCC eMMC Boot Controller > eMMC4.41

Intel® HD Audio Configuration
- Set Device Manager > System Setup > South Cluster Configuration > Audio Configuration > LPE Audio Support > Disable
- Set Device Manager > System Setup > South Cluster Configuration > Audio Configuration > Audio Controller > Enable

USB Configuration
- To enable XHCI controller:
 - Device Manager > System Setup > South Cluster Configuration > USB Configuration > EHCI Controller > Disable
 - Device Manager > System Setup > South Cluster Configuration > USB Configuration > XHCI Controller > Enable
 - Device Manager > System Setup > South Cluster Configuration > USB Configuration > XHCI Mode > Enable
- To enable USB Device (Bakersport ONLY):
 - Device Manager > System Setup > South Cluster Configuration > USB Configuration > USB OTG Support > PCI Mode
 - Device Manager > System Setup > South Cluster Configuration > USB Configuration > USB VBUS > OFF

SATA Configuration
- To enable AHCI mode:
 - Device Manager > System Setup > South Cluster Configuration > SATA Drives > Chipset SATA Mode > AHCI
LPSS I/O Device Note:

The I2C controller driver supports fast mode by default. To enable standard mode, append the arguments to the kernel command line.

When the image is booted into a GRUB menu, press e to enable kernel command-line editing. Append the line at the end of linux/vmlinux.

"i2c-designware-pci.force_std_mode=1" (PCI mode)

"i2c-designware-platform.force_std_mode=1" (ACPI mode)
5 Product features

This implementation supports the following features:

- Linux® Kernel version 3.10.40
- Intel’s Open Source Integrated Graphics Driver for Linux® (i915)
- SATA (IDE, AHCI), USB Host Controller 2.0 and 3.0
- USB device mode (Bakersport ONLY)
- eMMC and SD Host Controller
- Intel® HD Audio, GbE (Ethernet), APIC, RTC
- LPSS I/O devices - I2C Designware, SPI-PXA2XX, HUART, SMBus i801, PWM (ACPI mode only)
- LPSS device enumeration in PCI mode and ACPI mode

§
6 Known Issues for LPSS I/O Devices

Issue: HSUART

When running PCI mode HSUART at baud rate 2M and above, you may receive a kernel message "serial8250: too much work for irq...". Generally, it will not disrupt the transfer and the data transfer will complete without data corruption. However, occasionally data transfer may halt when this kernel message appears. In this case:

1. Reopen the HSUART port. To do this, stop the current data transfer and close the terminal.
2. Then, open a new terminal and execute the data transfer again.

Issue: SD Cards that supports DDR50 mode

Due to the limitations in BIOS, not all SD cards that support DDR50 mode are supported by this BSP.