By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest product specifications and roadmaps.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel processor numbers are not a proxy for performance. Processor numbers differentiate features within a processor family, not across different processor families. Learn more at: http://www.intel.com/products/processor_number/

Intel, the Intel logo, Intel Atom, Intel Core and Intel Quark, are trademarks of Intel Corporation in the U.S. and/or other countries.

Wind River is a trademark of Wind River Systems, Inc.

*Other names and brands may be claimed as the property of others.

Copyright © 2014–2015, Intel Corporation. All rights reserved.
Quick Power-On

The following terms are used in these steps:

- Target Device refers to the Intel® IoT Gateway - DK100 Series.
- Host System refers to a Linux system that you provide.

1. Connect the **Serial Interface** to a Host System running PuTTY.
2. Connect the **Power Supply**.
3. At the login prompt, use root for both the login ID and password.

The Target Device is now booted with the sample runtime image. This sample runtime image is for evaluation purposes only. After you have explored its features, use the rest of this document to build a production-ready runtime image.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2015</td>
<td>007</td>
<td>Changed information related to recommended development hosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated errata</td>
</tr>
<tr>
<td>February 2015</td>
<td>006</td>
<td>First Intel® IoT Gateway 2.1 release</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Document restructured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added appendix to build an Intelligent Device Platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project with Wind River Workbench</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added appendix for Triage Tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Command and other modifications throughout for Release 2.1</td>
</tr>
<tr>
<td>September 2014</td>
<td>005</td>
<td>Corrected document references / added links</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrected firmware update command to add modprobe efi_capsule_update</td>
</tr>
<tr>
<td>September 2014</td>
<td>004</td>
<td>Minor updates</td>
</tr>
<tr>
<td>August 2014</td>
<td>003</td>
<td>Corrected licensing instructions</td>
</tr>
<tr>
<td>July 2014</td>
<td>002</td>
<td>Minor updates and corrections</td>
</tr>
<tr>
<td>July 2014</td>
<td>001</td>
<td>Initial public release</td>
</tr>
</tbody>
</table>
Figures

1 Software Stack..10
2 Intel® IoT Gateway DK100 Series - Back...11
3 RS-232 Cable for Serial Communication Transmission...12
4 Power Cord...13
5 Sample “You Are Here”..14
6 Register a Product...27
7 Create Support User Account..28
8 Wind River License Key Request Confirmation..28
9 Logged Into Intel Registration Center..29
10 Intel Registration Center Product Page...29
11 Email Message: Intel® Premier Support Registration Successfully Completed.........30
12 Message: Thank you for registering Intel® IoT Gateway Development Kit DK100 Series...30
13 Wind River Installer Package Updates...33
14 Online Update Settings, Part 1...34
15 Online Update Settings, Part 2...34
16 Activation Type..35
17 License Authorization Code Location...36
18 Choose Installation Filters...37
19 Select Products...37
20 Confirm and Install..38
21 PuTTY Virtual Terminal Screen, Request to Boot from MMC..............................42
22 USB Flash Drive File System Name...44
23 Folder Error for wr_usb_boot..45
24 Knowledge Forum Opening Screen...49
25 Ask Question..50
26 Title Question...50
27 Categorize Question...50
28 Tagged Question..51
29 Submit Question...51
30 Subscribe to Forum Tags...52
31 Untrusted Certificate...53
32 WebIF Application..54
33 Workspace Location Selection...55
34 Create a New Workbench Project..56
35 Selecting Target Operating System...56
36 Select Build Type..57
37 Specify Project Name...57
38 Enable Addons..58
39 Reload Configurations...59
40 glib_idp Option Available..60
41 Add Layers..61
42 Add wr-intel-support...62
43 Add wr-mcafee Layer..63
44 Adding Options...63
45 enable jobs=50..64
46 -enable-parallel-pkgbuilds=<number of CPUs>..65
47 Finalize Configuration..66
48 Configuration Script Progress...67
49 Build Configuration Completed..68
50 Build Project..69
51 Build Project Progress Window...70
52 Config File..70
53 Build Console Displaying Project Completion...71
54 PuTTY Configuration Screen..73
55 Change to Serial with Speed of 115200... 74
56 Change Flow Control... 75
57 Change to SCO Function Keys.. 76
58 Save Settings... 77
59 Update Session with Correct tty Port.. 78
Tables

1. Reference Documents... 15
2. Items to Obtain.. 16
3. Recommended Development Hosts.. 17
4. Login IDs and Passwords... 18
5. Target Device Errata.. 79
1.0 Introduction

1.1 About the Intel® IoT Gateway Development Kit DK100 Series

The Intel® IoT Gateways provide pre-integrated hardware and software building blocks. The gateways connect legacy and new systems, and enable seamless and secure data flows between edge devices and the cloud. Using a single, integrated solution allows you to focus your resources on innovating for new services, bug data solutions, and other IoT-focused applications.

Intel® IoT Gateway Development Kit DK100 Series includes the following:

- **Processor**: Intel® Quark™ SoC X1020D
- **Software**: Wind River® Linux (Host), Wind River® Intelligent Device Platform XT, Wind River Workbench, McAfee® Embedded Control
- **Security**: Open SSL* Library, McAfee® Embedded Control, SRM Signing Tool, Certificate Management, Secure Boot, Application Integrity Monitor, Application Resource Control, Secure Package Management, Encrypted Storage
- **Manageability and provisioning**: OMA DM, TR-069, Web-based configuration interfaces
- **Communications and connectivity**: Serial, USB, VPN, WI-Fi* Access Point, Bluetooth*, MQTT, ZigBee* (ZigBee is enabled by third-party hardware)
- **Runtime environments**: Java*, OSGi*, Lua*
- **I/O**: 2x Ethernet* 10/100, USB 2.0 host & device, RS-232, RS-485, 2x internal mini PCIe (for Wi-Fi* / Bluetooth* / 3G modules), SPI (internal), 12-bit 8 channel ADC
- **Memory and storage**: 512 KB SRAM, 1 GB ECC DDR3, onboard microSD card

The Intel® IoT Gateway - Development Kit DK100 Series provides a key ingredient for enabling the connectivity of legacy industrial, energy, and transportation devices to the IoT. It integrates technologies and protocols for networking, embedded control, enterprise-grade security, and easy manageability on which application-specific software can run. This product offers:

- **Speed**: By integrating hardware and software building blocks.
- **Protection of legacy investments by connecting new and legacy systems with intelligent compute platforms for communication to the cloud.**
- **Secure data with standards-based interfaces.**
The following diagram illustrates the software components that are included in the Intel® IoT Gateway Development Kit DK100 Series Software Stack.

Figure 1. Software Stack

<table>
<thead>
<tr>
<th>Ecosystem / Application Development and end-user enabled cloud connector, applications, and services</th>
<th>Manageability</th>
<th>Security</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA DM TR-069 Web-Based Configuration Interfaces</td>
<td>OMA DM TR-069 Web-Based Configuration Interfaces</td>
<td>Open SSL Library SRM Signing Tool Certification Management Secure Boot Application Integrity Monitor Application Resource Control Secure Package Management Encrypted Storage McAfee Embedded Control</td>
<td>Bluetooth* Serial USB</td>
</tr>
<tr>
<td>Lua* Java* OSG SQLite3</td>
<td>Lua* Java* OSG SQLite3</td>
<td>Lua* Java* OSG SQLite3</td>
<td>Wind River Development Environment</td>
</tr>
<tr>
<td>Wind River Linux 5.0.1</td>
<td>Wind River Linux 5.0.1</td>
<td>Wind River Linux 5.0.1</td>
<td>Intel Processor-Based Solution (Intel® Quark™ SoC X1020D Processor)</td>
</tr>
</tbody>
</table>

1.2 Intel® IoT Gateway Development Kit DK100 Series Kit Contents

Your kit contains the following items:

- One Intel® IoT Gateway DK100 Series with pre-loaded Wind River® Intelligent Device Platform XT image
- Documentation
- One power supply
- Serial-to-USB cable set
- Two Wi-Fi antennas
- RS485 and ADC terminal connectors
The following photos provide details and descriptions for the hardware interfaces/components of the Intel® IoT Gateway DK100 Series.

Figure 2. Intel® IoT Gateway DK100 Series - Back

1. Analog to Digital Converter inputs. 0-5V dynamic range. Use 10-pin connector insert supplied.
 - Pinout is as follows: Pin 1: Channel 1, Pin 2: Channel 0, Pin 3: Channel 3, Pin 4: Channel 2, Pin 5: +5V (25mA max), Pin 6: GND, Pin 7: Channel 5, Pin 8: Channel 4, Pin 9: Channel 7, Pin 10: Channel 6.
2. RS-232 serial console and debug port. 3.5mm stereo audio jack. Use the 3.5mm - > DB-9 adapter supplied. The Audio Stereo Jack adapter plugs into this connector.
3. RS-485 half duplex, non-isolated serial port. Use 3-pin connector insert supplied.
 - The pin-out is as follows: Pin 1: Data+(B), Pin 2: GND, Pin 3: Data-(A).
4. USB Host Port - type A.
5. USB Device port - type B.
6. RJ-45 10/100 Ethernet Port 0.
7. RJ-45 10/100 Ethernet Port 1.
8. Reset button. Use a paper clip to access the button if a reset is needed.
9. 5V DC - 4A main power input. Use the power adapter supplied.
10. Wi-Fi antenna bulkhead connectors.
Figure 3. **RS-232 Cable for Serial Communication Transmission**

You will use this between your Host System and the Target Device.

The USB connection, noted by number 1 in the figure, attaches to the USB port on your Host System.

The audio stereo jack adapter, noted by number 2, attaches to the back of the Target Device. See Figure 2 on page 11, number 2.

Note: Do not attach the RS-232 USB connection to the Host System until instructed to do so.
Figure 4. Power Cord

Number 1 in the figure slides into the power holder and then can be plugged into a power outlet.

The DC barrel connector, number 2 in the figure, connects to the back of the Target Device. See Figure 2 on page 11, number 9.

If you need to detach the power plug from the power cradle, pinch the latch together at the bottom of the power cradle and push the power plug up.

1.3 About this Guide

This guide is organized as follows:

- **Chapters 1 - 4**: How to set up your Target Device, including connecting it to your Host System.
- **Chapters 5 - 7**: How to build your own runtime software and install it on your Target Device.
- The appendices provide information about:
 - Using the Intel® IoT Gateway Knowledge Forum.
 - Building an Intelligent Device Platform Project using Wind River Workbench.
 - Using the Wind River Workbench to perform a Project Export / Import.
 - Using the Triage Tool to aid in debugging.
 - Installing and configuring PuTTY.
For help with typing commands to your Linux terminal, use Intel® IoT Gateway Development Kit DK100 Series - Getting Started Guide Commands at https://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=24331&lang=eng&wapkwd=dk100. This text file includes all of the commands in this Getting Started Guide. The purpose is to provide you with an easy way to copy and paste commands to your Linux terminal.

Document Conventions

This document uses the following conventions:

- "Development Kit" refers to the Intel® IoT Gateway Development Kit DK100 Series. This term includes the gateway hardware, the board firmware, and the software from Wind River Systems, Inc.
- "Target Device" refers to the gateway device onto which you will install Wind River® Intelligent Device Platform XT runtime software.
- "Host System" refers to a Linux system that you will use to configure your Target Device. You will install development tools from Wind River Systems, Inc. on this system. The Host System is not included in this kit.

The examples in this publication use a Host System that has an Intel® Core™ i5 second generation processor and Ubuntu* Desktop 14.04 distribution software. If you are using a different operating system, substitute the instructions in this publication with instructions that are appropriate for your system.

- This font is used for commands, API names, parameters, filenames, directory paths, and executables.
- **Bold text** is used for graphical user interface entries, buttons, and keyboard keys.

| This font in a gray box is used for commands or scripts that you must type. |
| This font in a green box displays responses to your commands. |

- To help you keep track of your progress, illustrations are used at the beginning of each key task. The following is an example of these illustrations.
 - A white background indicates steps you have completed.
 - A blue background indicates the step you are about to work on.
 - A gray background indicates future steps.

Figure 5. Sample "You Are Here"
1.4 Reference Documents

The following documents will help you complete your installation.

<table>
<thead>
<tr>
<th>Title</th>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Wind River® Linux 5.0 / 5.1 Recommended Development Host Distributions** | [Wind River Online Support:](https://knowledge.windriver.com/@api/deki/files/153500/041441.pdf) | - Recommended Development Host Distributions
- Required Host Packages by Host Distribution. |
- Development & Build Environment
- Configuration and Build
- Layers & Recipes
- Userspace & Kernel Development
- Debugging |
- Wind River Intelligent Device Platform Architecture
- Technical Specifications. |
- Architecture
- Security, Connectivity & Management
- Validation
- System Owner, Device & Application Development Vendor Tasks. |
- Requirements
- Security Planning
- Risks, Threats & Intelligent Device Platform Security Mechanisms
- BKMs, Keys & Certificates
- Secure Repository
- Encrypted Data Storage. |
Review the following information to make sure you have everything you need.

Required Experience Level

You need basic experience using the Linux command line interface.

Items and Software You Need to Provide

You will need to provide the following items to complete your installation:

<table>
<thead>
<tr>
<th>What you need</th>
<th>First Needed in</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host System hardware (recommended):</td>
<td>Connect the Target Device to a Host System on page 20</td>
<td>The minimum hardware requirements are:</td>
</tr>
<tr>
<td>• 3rd Generation Intel® Core™ i5 processor or better</td>
<td></td>
<td>• Intel® Pentium® 2 processor</td>
</tr>
<tr>
<td>• CPU with four or more cores and with Intel® Hyper-Threading Technology</td>
<td></td>
<td>• 80 GB free disk space</td>
</tr>
<tr>
<td>• 150 GB or more of free disk space</td>
<td></td>
<td>• 768 MB RAM</td>
</tr>
<tr>
<td>• 4 GB or more RAM</td>
<td></td>
<td>With these minimum requirements, your performance may not be adequate.</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>What you need</th>
<th>First Needed in</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• One USB 2.0 port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host Operating System</td>
<td>Connect the Target Device to a Host System on page 20</td>
<td>The Wind River Systems, Inc. development tools may be installed on many different Linux* based host systems. See Recommended Development Hosts on page 17. These instructions have been validated on an Ubuntu 14 64-bit host system.</td>
</tr>
<tr>
<td>Communications: • PuTTY utility or equivalent • Serial to USB cable</td>
<td>Connect the Target Device to a Host System on page 20</td>
<td></td>
</tr>
<tr>
<td>USB flash drive with at least 4 GB capacity</td>
<td>Use Wind River WebIF to Configure the Target Device (Optional) on page 53</td>
<td>The contents of this flash drive will be overwritten.</td>
</tr>
</tbody>
</table>

Recommended Development Hosts

The following recommended development host distributions have been tested by Wind River to run Wind River Linux 5.0 / 5.0.1. Intel recommends the Ubuntu Desktop 14.04 (base version) 64-bit OS for your Host System.

Table 3. Recommended Development Hosts

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu* Desktop 14.04 (base version) or 12.04</td>
<td>x86 32-bit, x86 64-bit</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux Workstation 6.5</td>
<td>x86 32-bit, x86 64-bit</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux Workstation 7</td>
<td>x86 64-bit</td>
</tr>
<tr>
<td>OpenSUSE* 12.2</td>
<td>x86 32-bit, x86 64-bit</td>
</tr>
<tr>
<td>Novell* SUSE Linux Enterprise Desktop 11 SP2</td>
<td>x86 32-bit, x86 64-bit</td>
</tr>
<tr>
<td>Fedora* 18</td>
<td>x86 32-bit, x86 64-bit</td>
</tr>
</tbody>
</table>

These instructions in this guide were validated on an Ubuntu 14.04 (base version) 64-bit host system, which is available at http://old-releases.ubuntu.com/releases/trusty/ubuntu-14.04-desktop-amd64.iso

Caution: To maintain Wind River® Intelligent Device Platform XT compatibility, do not perform `sudo apt-get upgrade`

Login IDs and Passwords

You will be prompted for several login IDs and passwords throughout these installation procedures. The following is a quick reference to them.
Table 4. Login IDs and Passwords

<table>
<thead>
<tr>
<th>Logging into...</th>
<th>ID and Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Device</td>
<td>ID: root</td>
</tr>
<tr>
<td></td>
<td>Password: root</td>
</tr>
<tr>
<td>Target Device local wireless network</td>
<td>Password: windriveridp</td>
</tr>
<tr>
<td>Wind River Intelligent Device Platform Administration Console (WebIF)</td>
<td>ID: admin</td>
</tr>
<tr>
<td></td>
<td>Password: admin</td>
</tr>
</tbody>
</table>

Technical Support

For users with a registered product, Intel provides technical support for this Development Kit through Intel® Premier Support. If you do not already have an Intel Premier Support account, you may apply for one when you register this Development Kit in Register Your Development Kit on page 27.

To submit a support request using Intel Premier Support, go to https://businessportal.intel.com. Click the Product Support Tab -> Intel Premier Support Home. Submit your issue using one of these product names:

- Intel® IoT Gateway Development Kit DK100 Series
- Intel® Development Toolkit for Data Gateways

In addition to Intel® Premier Support, registered users can use the Intel® IoT Gateway - Knowledge Forum to ask "how-to" questions. Follow the instructions in Intel IoT Gateway Knowledge Forum on page 48 to register, login, and submit questions in this online support forum.
2.0 Connect the Hardware

You will begin your installation by connecting the Target Device hardware. This chapter guides you through making the connections and plugging in your Target Device. Refer to Figure 2 on page 11 through Figure 4 on page 13 in making your connections.

Remember: Target Device refers to the gateway device that is included in the Development Kit. Host System refers to the Ubuntu 14.04 system that you will use to build the runtime software.

1. Connect the RS-232 audio stereo jack to the back of the Target Device. Do not connect the USB cable to the Host System yet.
2. Plug in the power adapter connector to the DC In connector on the Target Device.
3. Plug the power cord into a 120V or 240V power outlet to ensure it powers on.
4. Unplug the device. You will plug it in again during the next steps.
This section shows you how to make a connection between your Host System and Target Device using the PuTTY utility for a serial console connection. The instructions in this section are specific to PuTTY, but you can use a different utility to make your connection if you prefer. See your instructions for your utility if you use another utility. If you need help configuring PuTTY on your Host System, see Installing and Configuring PuTTY on page 73.

What you need to do

1. Save a session in your PuTTY configuration named **Intel IoT Gateway**. Under Serial line type `/dev/ttyUSB0`

2. From your Host System `$HOME` command prompt, display the available TTY ports. Use the following command:

   ```
   ls /dev/tty*
   ```

 Write down the resulting TTY port information. You will use this in the next step.

3. The RS-232 cable is already connected to your Target Device. Connect the other end to your Host System USB port.

4. Plug in your Target Device.

5. While still at the `$HOME` prompt, change the ownership and permissions for using PuTTY. This example uses `ttyUSB0` for the port. Your port may be different; see the port you wrote down in the previous step. Use the following command, replacing `ttyUSB0` with the port that you wrote down.

   ```
   sudo chmod 666 /dev/ttyUSB0
   ```

6. Start the PuTTY utility.

7. Load the IoT Gateway session that you saved in step 1.

8. Click **Open** to launch a PuTTY Virtual Terminal session. You are now connected to the Target Device. The Virtual Terminal opens to a blank screen.

9. Leave the screen at this point. You will return to it later.
3.1 Connecting with a Wireless Network Connection

The Target Device advertises a wireless network with a service set identifier (SSID) of IDPDK-xxxx, where xxxx is the last four digits of the wireless network card MAC address. This section guides you through using this information to connect a Host System to the Target Device’s wireless network to access the features on the Target Device.

1. From the PuTTY Virtual Terminal, issue the following command to determine the wireless SSID of the Target Device:

 grep ssid /etc/config/wireless

 The output displays the SSID:

 option ssid IDPDK-xxxx

2. Write down your SSID.

3. Issue the following command from the Target Device command line to determine the IP address used for the wireless Access Point:

 ifconfig br-lan

 The output includes the IP address, denoted by inet addr

 inet addr:<TARGET_DEVICE_IP_ADDRESS>

 The Target Device ID address is likely set to the default 192.168.1.1

4. Write down your Target Device IP address.

5. On the Host System (not in the PuTTY Virtual Terminal), select the System Settings icon.

6. Click the Network icon.

7. Click Wireless.

8. Click the dropdown arrow next to Network Name and then click the SSID that you wrote down.

9. When prompted, enter the password windriveridp.

The Target Device and Host System are now connected through a wireless network. You can use ssh to log in to the Target Device from the Host System. See Remotely Logging in to the Target Device with ssh on page 22.
3.2 Connecting with a Wired Ethernet Connection

Refer to Connect the Hardware on page 19 to make the following connections.

1. Use an Ethernet cable to connect the Target Device LAN1 port to an I/O port on a router that has an integrated DHCP server. It is important to use the port, labeled Ethernet LAN 1 on your Target Device. This port connects as eth1.

2. Confirm on the PuTTY video display for the Target Device that the Target Device is connected at eth1. Your screen should display:

```
eth1 NIC Link is Up
```

3. Issue the following command from the PuTTY Virtual Terminal command line to determine the IP address used for the network Access Point:

```
ifconfig br-lan
```

The output includes the IP address, denoted by `inet addr` as shown:

```
inet addr:<TARGET_DEVICE_IP_ADDRESS>
```

The Target Device IP address is probably set to the default of 192.168.1.1

4. Write down your Target Device IP address.

The Target Device and Host System are now connected to a wired network. You can use ssh to log in to the Target Device from the Host System. See Remotely Logging in to the Target Device with ssh on page 22.

3.3 Remotely Logging in to the Target Device with ssh

Once the Target Device and Host System are connected through a wired or wireless network, you can use ssh to remotely log in to the Target Device from the Host System.

1. Validate that both the Target Device and the Host System have a valid IP address and are on same subnet. Use the following command on both the Target Device and the Host System to see the IP address on each.

```
ifconfig
```

2. Be sure both Host System and the Target Device return an IP address and the subnet addresses match. For example, the following addresses are valid and they are on the same subnet:

Target Device IP address

```
192.168.1.1
```

Host System IP address

```
192.168.1.9
```

3. On the Target Device execute the following command to start the sshd deamon:

```
service sshd start
```
You should see the following output:

```
Starting OpenBSD Secure Shell server: sshd
done.
```

4. (Optional): To automatically start sshd for all future reboots, execute the following command on the Target Device:

```
update-rc.d sshd defaults
```

5. To remotely login to the Target Device from the Host System, at the Host System execute the following command, substituting `<TARGET_DEVICE_IP_ADDRESS>` with the Target Device IP address that you wrote down earlier.

```
ssh root@<TARGET_DEVICE_IP_ADDRESS>
```

Your screen displays:

```
root@<TARGET_DEVICE_IP_ADDRESS>`s password:
```

6. Type the Target Device password:

```
root
```

When you successfully log in to the Target Device, the command prompt is displayed:

```
root@WR-IntelligentDevice:~#```
4.0 Prepare to Build Your Runtime Image

The first part of this publication got you up and running with a sample runtime image that you used to explore some of the Target Device features. This part of the document guides you through creating your own runtime image. Although you will not be using your Target Device again for a while, the steps in the remainder of this publication assume that you have completed the setup steps.

4.1 Task Checklist and Completion Times

Below are the key tasks you will complete in the remainder of the chapters. You must complete each of these tasks in order. Upon completing one chapter, continue to the next until you reach the optional information in the appendices.

The full installation process, including the steps to build your own runtime image takes several hours. The time required will vary, depending on your skills and experience, the processor speed of the system that you use to perform the configuration steps, and the speed of your internet connection.

The estimated completion times in the table below are based on Ubuntu* Desktop 14.04 running on an Intel® Core™ i5 second generation processor and with an internet connection running at approximately 3 MB per second.

You will prepare the Host System before working more with the Target Device.

Note: Host System refers to a computer system onto which the development tools from Wind River Systems, Inc. will be installed. Target Device refers to the hardware that is included in your Development Kit.

<table>
<thead>
<tr>
<th>Done</th>
<th>Task</th>
<th>Section</th>
<th>Estimated Completion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>Gather necessary components</td>
<td>Items and Software You Need to Provide on page 16</td>
<td>10 minutes</td>
</tr>
<tr>
<td>✔</td>
<td>Connect the Target Device and a Host System</td>
<td>Connect the Target Device to a Host System on page 20</td>
<td>10 minutes</td>
</tr>
<tr>
<td></td>
<td>Update Host System Linux</td>
<td>Install Ubuntu Linux Updates on page 25</td>
<td>10 minutes to 1 hour, depending on the number of updates to install</td>
</tr>
<tr>
<td></td>
<td>Create Host System directories, and confirm Host System free space.</td>
<td>Create Directories and Confirm Disk Space on page 26</td>
<td>10 minutes</td>
</tr>
</tbody>
</table>
Register your Development Kit to obtain a Wind River SW license. A license is required to complete the remaining steps in this publication.

Register Your Development Kit on page 27

10 minutes to register. Up to 1 day to receive license

Install and Build Runtime on Host System
The completion time is highly dependent on the Host System and the Internet connection speed.

5 - 10 hours

Install base packages for Wind River Linux 5.0.1, Wind River Intelligent Device Platform XT 2.0, Wind River Workbench 3.3.5
Installing the Wind River Host Tools on page 32
2 - 4 hours

Build the runtime software image on the Host System and copy the image to a USB flash drive.
Build Intelligent Device Platform XT Runtime Software on page 40
3 - 5 hours

Install Runtime Image to Target Device

45 minutes

Install the runtime image on the Target Device.
Deploy Image to Micro-SD Flash Card
45 minutes

Total Estimated Time to Complete Installation

6 - 12 hours

### 4.2 Prepare Host System for Wind River Software Installation

**Install Ubuntu Linux Updates**

The Linux software on your Host System must be current before you install the Wind River Host Tools software. This section provides instructions to perform this update. From your Host System command line interface, use the following command to apply the Ubuntu updates:

```
sudo apt-get update
```
Create Directories and Confirm Disk Space

Create the following directories on your Host System:

- **$HOME/WindRiver** - This directory is used to install the Wind River Host Tools. The installation requires approximately 30 GB of free space in this directory.
- **$HOME/Installer** - This is a temporary directory that you can delete after completing your installation. The installation requires approximately 15 GB of free space in this directory.
- **$HOME/Project** - The project directory in which you will develop your Intelligent Device Platform XT-based solution. The build requires approximately 20 GB of free space in this directory.
- **$HOME/Project/build-cache** - The build cache directory. Using a build cache can significantly reduce the time required to build the project after incremental changes are made. The build requires approximately 10 GB of free space in this directory.

Use these commands to create the directories:

```bash
cd $HOME
mkdir WindRiver
mkdir Installer
mkdir Project
mkdir Project/build-cache
```

You must also have approximately 15 GB of temporary disk space in the `/tmp` directory.

In total, a minimum of approximately 100 GB is required to complete the full runtime build process.
5.0 Register Your Development Kit

Important: If you are using an Early Access Development Kit or a Loaner Development Kit from the Intel Demo Depot, use the 90-day License Authorization Code provided in the Dear Customer Letter that came with your kit. In this case, you do not need to register your Target Device. Instead, skip ahead to Install Linux Packages and Wind River Linux Host Tools on the Host System on page 32.

Before you begin the installation process, you must register your Development Kit. The registration process submits a license key request to Wind River to permit you to download Wind River Development software. You cannot use the Wind River installer to download the Wind River software without this license.

You will use the login ID and password that you create or use in these steps to access the Intel Registration Center. On the Intel Registration Center you can see a list of licensed products and download the installers for those software products.

1. In your Web browser on any computer, go to https://registrationcenter.intel.com

The following screen on any computer, go to https://registrationcenter.intel.com

**Figure 6. Register a Product**
2. In the box for your email address, select the appropriate option for your email address:
   • **IMPORTANT**: If you have an Intel® Premier Support account, use the email address that is associated with that Intel® Premier Support account. Doing so will automatically add this product to your list of supported products.
   • Otherwise, use your preferred email address. Use an address that you can use when registering any future Intel products.

3. Type in the serial number that is located at the top of the *Dear Customer Letter* included in your product box.

4. A screen displays on which you must fill out your contact information. Click *Submit* after filling in your information.

5. Follow the correct path:
   • If your email address was not recognized, you will be prompted to create a user account. See Figure 7 on page 28. Type in your preferred Login ID and password, and then click *Submit*.
   • If your email address is recognized, you will not see Figure 7 on page 28. Continue to the next step.

6. A confirmation screen displays with the following displayed at the top of the screen. Click *Continue*.

---

**Figure 7. Create Support User Account**

![Figure 7](image)

**Figure 8. Wind River License Key Request Confirmation**

![Figure 8](image)
7. Type your user name and password to sign into the Intel Registration Center.
8. Once you have signed in, your list of subscribed products is displayed. See the example below.

**Figure 9.** **Logged Into Intel Registration Center**

![Logged Into Intel Registration Center](image)

9. Click the version link for your product in the table of products to go to the product page. See the circled information in the figure above.

The following screen displays:

**Figure 10.** **Intel Registration Center Product Page**

![Intel Registration Center Product Page](image)
10. Click the **Download: [file]** link to download the Installer for the Wind River Host Tools. You will use this file to install the Wind River Host Tools in the next chapter. See the circled information in the above figure.

Upon completion, you will receive two email messages from "Intel Registration Center." Save these messages for future reference.

- One message is titled, "Intel® Premier Support Registration Successfully Completed". You can use Intel Premier Support for technical support of this Development Kit". See the sample message below.

**Figure 11. Email Message: Intel® Premier Support Registration Successfully Completed**

```
(If the characters do not show properly, please try viewing this email with UTF-8 encoding.)
You have successfully completed the registration process. You now have access to the following product(s):

Intel® IoT Gateway Development Kit DK100

If you created a new account during the registration process, the product(s) should be available for that account. If you already had an account when you started the registration process, the product(s) should be available in that account.

You are now able to report issues and receive file downloads and announcements on the product(s) for which you registered by accessing https://premier.intel.com.

Sincerely,

Intelligent Systems Group

Intel Corporation

Copyright © 2014 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other brands and names may be claimed as the property of others.
```

- The other message is titled, "Thank you for registering Intel® IoT Gateway Development Kit DK100 Series". See the sample message below.

**Figure 12. Message: Thank you for registering Intel® IoT Gateway Development Kit DK100 Series**

```
(If the characters do not show properly, please try viewing this email with UTF-8 encoding.)
You have successfully completed the registration process. You now have access to the following product(s):

Intel® IoT Gateway Development Kit DK100

If you created a new account during the registration process, the product(s) should be available for that account. If you already had an account when you started the registration process, the product(s) should be available in that account.

You are now able to report issues and receive file downloads and announcements on the product(s) for which you registered by accessing https://premier.intel.com.

Sincerely,

Intelligent Systems Group

Intel Corporation

Copyright © 2014 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other brands and names may be claimed as the property of others.
```
Under SOFTWARE LICENSE KEY the text indicates that you will receive a license key from Wind River. You will need this license key when you install the Wind River Components on the Host System in Installing the Wind River Host Tools on page 32.
### 6.0 Install Linux Packages and Wind River Linux Host Tools on the Host System

This chapter will guide you through installing the Wind River Host Tools software on your Host System, and then verifying that all necessary Linux operating system packages are installed on the Host System.

You must have internet access and a Wind River license to complete these steps. You applied for the license in Register Your Development Kit on page 27. Check your email for the license information.

#### Installing the Wind River Host Tools

In this section, you will install the following:

- Wind River Linux 5.0.1
- Wind River Intelligent Device Platform XT 2.0
- Wind River Workbench 3.3.5

If possible, begin these steps at the end of the day and in a location that can be unattended, so you can allow the installation to run overnight.

To complete this section, you need the following:

- The Installer file that you downloaded from the Intel Registration Center in Register Your Development Kit on page 27, step 10.
- The license information included in the License email message from Wind River. See Figure 17 on page 36.
- An internet connection for your Host System.

**Note:** The download and install process can take several hours to complete depending on the speed of your Internet connection. On an Intel® Core™ i5 second generation processor with a 3 MB per second download speed, these steps will take approximately 2 hours. At a 1 MB per second download speed, these steps will take approximately 4 hours.
**Install Linux Packages and Wind River Linux Host Tools on the Host System—Intel IoT Gateway Development Kit DK100 Series**

**Note:** You may have used different directory names when you created directories in Create Directories and Confirm Disk Space on page 26. If you used different names, replace the directory names in the following steps with the names of the directories that you created.

1. Copy the Installer file that you downloaded in Register Your Development Kit on page 27, step 10 into the `$HOME/Installer` directory.

2. Change to the `Installer` directory and unzip the installer file. Use the following commands:

   ```
 cd $HOME/Installer
 unzip DVD*.zip
   ```

3. Start the Wind River Host Tools Installer with the following command:

   ```
 ./setup_linux
   ```

   The Wind River Installer screen opens.

   If instead you see the following screen indicating new Linux packages are required, complete the steps below the figure.

**Figure 13. Wind River Installer Package Updates**

![Wind River Installer Package Updates](image)

   a. To perform the updates, using the following command:

   ```
 sudo apt-get install libstdc++6:i386 libgtk2.0-0:i386 libxtst6:i386
   ```

   b. After the update command completes, repeat the `./setup_linux` command.

4. In the Installer window, select the **Wind River Host Tools** installation location.

   The `WindRiver` directory displays by default. If not, use the `Browse` button to select the `$HOME/WindRiver` directory. Then click **OK**.

5. On the page **Online Update Settings**, perform the following actions:

   - If you are not using a proxy server to connect to the internet, go to step 7.
   - If your network requires a proxy server, check the box **Connect to the internet using a proxy server** and provide your proxy information.

   If you receive error messages, double-check your proxy settings and work with your IT department for the appropriate settings.
6. On the next **Online Updates Settings** page, leave the defaults selected, as shown:

![Online Update Settings, Part 2](image)
The Wind River Installer checks for updates. This takes about 2 minutes.

7. On the page **Install or Download**, choose between installing right away from the internet, or to copy the product files to the Host System and perform the installation later.

8. On the page **Choose Activation Type**, select **Temporary activation (requires License Authorization Code and internet connection)**.

   *Note:* Although your Wind River Host Tools license is a permanent license, you must select **Temporary Activation** to use the license number and License Authorization Code that you received from Wind River.

**Figure 16. Activation Type**

9. On the page **Host Information**, choose the Ethernet adapter that will be used for downloading the Host System tools from the internet. This is used to link your Wind River software license with your Host System. Click **Next**.

10. On the page **User Information**, type in the following information:

    - The Wind River Software License Authorization Code (LAC) that you received via email when you registered your product. See the highlighted area in example email message below.
    - Enter your user information.
11. Click **Next**. A progress bar displays while the installer contacts Wind River to verify your Wind River License Authorization Code and register your Host System. This will take about 1 minute.

   **Note:** The MAC address of eth0 for your Host System is the only address allowed to use this license.

12. On the page **Choose Installation Filters**, click **Deselect all**, and then select only **Intel**. Click **Next**.
13. On the **Select Products** page, keep the default selections. Your screen will look similar to the following.
14. Click **Next**. The **License Agreement** displays. Review it, and then click **I ACCEPT** if you agree to the terms of the agreement.

15. On the page **Confirm and Install**, click **Install**.

Figure 20. **Confirm and Install**

*Note:* The download and install might take several hours depending on the speed of your Internet connection.

When the installation is complete, the top of the screen displays **Installed Content** and the **Next** button is again available.

16. Click **Next**. A thank you message displays with a link to a readme file. Recommended: Leave the default check next to the readme file.

17. Click **Finish** to exit the Installer window. The readme file opens in a browser and the installation application closes.

If you encounter installation issues, provide your Intel support contact with the following files from the directory: $HOME/WindRiver:

- setup.log
- setup_install_failure.log
Verify All Required Linux Packages Are Installed

These steps verify that all Linux operating system packages required for using the Wind River Host Tools are present. If any are not present, this section guides you through installing them.

1. Change to the directory `/home/WindRiver/wrlinux-5/scripts`. Use the following command:

   ```
 cd $HOME/WindRiver/wrlinux-5/scripts
   ```

2. Use the following command to verify all packages have been installed:

   ```
 ./host_package_install.sh
   ```

3. Choose the correct path:
   - Continue to Build Intelligent Device Platform XT Runtime Software on page 40 if you receive the response: All required host packages are installed.
   - Continue with the steps below if you receive a response similar to the following: Following packages need to be installed: [package #1] [package #2].

4. You should already be in the `/home/WindRiver/wrlinux-5/scripts` directory. If not, go to this directory.

5. Use the following command to install the additional package(s), replacing the package number with the information in the response you received in step 3:

   ```
 sudo apt-get install [package #1] [package #2] [etc]
   ```

   where you replace [package #1] with the first item listed in step 3, [package #1] with the second item, and so on.

   You may need to type your password at the prompt: `[sudo] password for [username]`
7.0 Build Intelligent Device Platform XT Runtime Software

Install Linux Packages and Wind River Linux Host Tools on the Host System on page 32 guided you through installing the Wind River Host Tools and Intelligent Device Platform XT software on your Host System. With the software installed, you are now ready to develop the applications and runtime operating system that will run on your Target Device. This guide does not cover application development. For guidance, see the documents listed in Reference Documents on page 15.

This section explains how to build an Intelligent Device Platform XT runtime file system and operating system. This runtime file system and operating system are built on the Host System and then installed on the Target Device.

If you use Eclipse® or if you prefer a GUI-based development environment to build your Target Device runtime file system and operating system, then see Building an Intelligent Device Platform Project Using Wind River Workbench on page 55.

The steps in this section will take several hours to complete. If possible, begin these steps at the end of the day and in a location that can be unattended so you can allow the build process to run overnight.

What you need to do

Note: You may have used different directory names when you created directories in Create Directories and Confirm Disk Space on page 26. If you used different names, replace the directory names in the following steps with the names of the directories you created.

1. Begin this procedure in your Project directory. Use the following command:

   ```bash
 cd $HOME/Project
   ```

2. Use the Wind River Linux configure command to configure the build. See the command below for a typical configure command. Use `configure --help` to explore supported configuration options, and see the Wind River® Intelligent Device Platform XT 2.0 – Programmer’s Guide, Part II (Key Related Tasks) for help with generating your own keys and for additional configuration options and details.
Note: By default the runtime operating system is built with the latest version of the Wind River Host Tools that you installed on your Host System. To use an earlier version, specify the desired "RCPL" version like this:

```
--with-rcpl-version=XXXX
```

where XXXX is the 4-digit RCPL version number.

Note: In the option for `--enable-parallel-pkgbuilds=4` use the number of process threads available in the CPU of your Host System. For example, when using a CPU with two cores and hyperthreading, four process threads are available, so specify "4" for optimal performance.

```bash
./WindRiver/wrlinux-5/wrlinux/configure \
--enable-board=intel-quark \
--enable-kernel=standard \
--enable-rootfs=glibc-idp \
--enable-addons=wr-idp \
--enable-bootimage=ext3,hdd \
--enable-jobs=6 \
--enable-parallel-pkgbuilds=4 \
--enable-patchresolve=noop \
--enable-rm-work=yes \
--enable-checkout-all-layers=yes \
--with-layer=wr-prosyst-mbs-smarthome-sdk-ia,wr-exegin-zigbee-ia,\
wr-digi-idigiconnector,wr-wks-oneagent-oma-dm-ia,\
wr-wks-oneagent-tr069,wr-ieee11073,wr-intel-support \
--with-template=feature/vlan,feature/opc,feature/recovery,\
feature/opc_demo,feature/ipsec_vpn,feature/12tp,\
feature/openjdk-bin,feature/online_updates,feature/bluetooth,\
feature/boot_delay_network,feature/pptp_vpn,\
feature/intel-wilkinpeak2,feature/webif
```

The configure command will take several minutes to complete. You will see progress hash-marks at the bottom of the screen through most of the process. Upon completion, your terminal prompt will return.

3. Build the runtime operating system using the command below. This builds the Linux runtime system and generates the runtime components that can be installed on your Target Device.

```bash
make fs
```

Note: This command will take 3 - 5 hours to complete. The completion time is highly dependent on the processing speed of your Host System.

At the end of the make process the Target Device runtime operating system is compressed into a single file that is a USB flash drive image. The flash drive image is created in the directory `~/Project/export`. The file has a `.bz2` extension.
8.0 Update SPI Firmware

Before installing the runtime image on the Target Device, you must update the SPI firmware. The steps in this section walk you through the firmware update. You will use the PuTTY Virtual Terminal to complete these steps.

1. In the PuTTY Virtual Terminal, boot your Target Device to MMC.

Figure 21. PuTTY Virtual Terminal Screen, Request to Boot from MMC

```
GNU GRUB version 0.97 (684K lower / 899964K upper memory)
IDF for Intel Quirk-based Platform - MMC

secured SKU, debug mode disabled, grub from spi, grub cfg from storage
Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS.
The highlighted entry will be booted automatically in 4 seconds.
```

It will take about 2 minutes for the Target Device to boot.

2. At the login prompt, use *root* for both the login ID and password.

3. Insert the USB flash drive into the Target Device.

4. While still in the PuTTY Virtual Terminal session, copy the `.cap` file from the USB flash drive to the firmware directory on the Target Device and enable the Target Device to update the firmware on next boot. Use these commands to do so:

```
mkdir -p /lib/firmware
modprobe efi_capsule_update
cp /media/sda1/CapsuleUpdate/Flash-crosshill-8M-secure.cap /lib/firmware
echo -n Flash-crosshill-8M-secure.cap > /sys/firmware/efi_capsule/capsule_path
echo 1 > /sys/firmware/efi_capsule/capsule_update
reboot
```
5. After the firmware has updated, power down the Target Device by issuing the following command:

```markdown
poweroff
```
9.0 Put Intelligent Device Platform XT Runtime Image onto USB Flash Drive

Build Intelligent Device Platform XT Runtime Software on page 40 guided you through building your runtime image and deploying it to a bootable USB flash drive.

You will now put the Intelligent Device Platform XT image onto a USB flash drive and then install it onto the Target System from the USB flash drive. You will begin these steps on your Host System terminal.

Note: The runtime software can be booted from the USB flash drive, but Intel recommends installing the runtime components on the Target Device's hard drive.

1. From the Host System $HOME directory, use the following command to display the mounted devices:

   ```
 df
   ```

   Your output will look similar to the following. Look for the USB file system name in the location on your screen where the file system name is circled in the example. In the example below, the USB flash drive file system name is /dev/sdb1. To identify it on your system, look at the right heading column that says Mounted on. In this column, look for the row that begins with /media. The file system name is in the left column of this row.

   ![USB Flash Drive File System Name](image)

   The example screen displays /dev/sdb1. The 1 at the end of sdb1 indicates the partition. In the step below, do not include the partition. In the example, only /dev/sdb is used for the file system name. Write down the file system name that is displayed on your screen. You will use it in the next step. If you
accidentally include the partition in the command, you will receive an error message: ERROR: Device mode should be set to -d option.
e.g.: /dev/sdb

Warning: The following command will overwrite all contents on your USB flash drive. The USB flash drive must have a capacity of at least 4 GB.

2. In the $HOME/projects directory, type the following command to format the USB flash drive with two partitions and deploy the tar file to the USB flash drive. This command also changes the media name on the USB flash drive. Choose the appropriate command for your circumstances, replacing the ? in sd? with the information you wrote down in the previous step:

```bash
sudo ./deploy.sh \
-u -f export/intel-quark-glibc-idp-standard-dist-srm.tar.bz2 \
-d /dev/sd? -y -b cross-hill
```

3. Type your password at the prompt: [sudo] password for <username>.

You may see an error screen stating it is not possible to open the folder wr_usb_boot, as shown below. This is not a concern. If you receive this message, click OK.

Figure 23. Folder Error for wr_usb_boot
4. When the process completes, remove the USB flash drive and re-insert it into the Host System. The USB flash drive mounts as /media/<username>/wr_usb_boot.

5. Copy and rename the new configuration tar file from your Host System to your USB flash drive, using the following command.

```
sudo cp export/intel-quark-glibc-idp-standard-dist-srm.tar.bz2
/media/<username>/wr_usb_boot/opt/rootfs-dist.tar.bz2
```

6. Use the following command to verify the build image has been copied to the USB flash drive by listing the directory contents as follows:

```
ls /media/<username>/wr_usb_boot/opt
```

7. Your output should include:

```
rootfs-dist.tar.bz2
```

   If you do not see this file:
   • Verify your configure command was correct in Build Intelligent Device Platform XT Runtime Software on page 40, step 2.
   • Verify that your copy command was correct in step 8, above.

8. Use the following command to unmount the USB flash drive, replacing the ? in sd?1 and sd?2 with the information you wrote down in step 1:

```
umount /dev/sd?1 /dev/sd?2
```

9. Remove the USB flash drive from the Host System.
10.0 Install Intelligent Device Platform XT Runtime on Target Device

Build Intelligent Device Platform XT Runtime Software on page 40 guided you through building your runtime image and deploying it to a bootable USB flash drive. Update SPI Firmware on Target Device - Conref Source walked you through updating the SPI firmware on your Target Device. You will now install the runtime software on your Target Device's SD drive. Complete these steps from the PuTTY Virtual Terminal $HOME screen on your Host System.

Note: The runtime software can be booted from the USB flash drive, but Intel recommends installing the runtime components on the Target Device's hard drive.

What you need to do

1. To install the Intelligent Device Platform XT from the USB flash drive to the Target Device SD drive, use the following command:

```
tgt=/dev/mmcblk0 /sbin/reset_media
```

2. Respond yes when prompted to Restore the boot media to its factory defaults. This process could take as long as 25 minutes. Do not remove the USB flash drive during this process. Upon completion, you will be prompted to log in. Use root for both the login ID and password.

3. After the command completes, shut down the Target Device. Use the command:

```
poweroff
```

4. Wait for the Target Device power button light to turn off.

5. Remove the USB flash drive from the Target Device.

The Target Device is now loaded with the new runtime image and is ready to use.

Now that you know how to use the Development Kit, it is time to develop your own gateway solution. See Table 1 on page 15 for a list of helpful technical documents.
Appendix A Intel® IoT Gateway Knowledge Forum

In addition to the technical support through Intel® Premier Support, an online community knowledge forum is available for the Intel® IoT Gateway Development Kit. The forum is located at https://ask.intel.windriver.com. On this forum, you can ask how-to questions and search for answers related to Wind River® Linux and the Wind River development tools.

Intel will continue to offer hardware and software technical support through Intel® Premier Support; you can use this knowledge forum as an additional support option. Questions on this forum are typically related to installation and usage of Wind River Linux, the Intelligent Device Platform XT, and compilers and development tools, such as the Wind River Workbench.

In using the forum, be aware that this is an open support model and the following bullets apply:

- Wind River hosted Knowledge Forums (Wind River Knowledge Forum and the Intel® IoT Gateway Knowledge Forum) are open support repositories that are accessible to Intel, Wind River employees, and customers who have active Support Maintenance Agreements.
- Questions posted on the forums are visible to all users. All users can contribute answers. Both questions and answers can be edited by any user on the Knowledge Forums.
- Refrain from posting proprietary, confidential, or controlled information on the Knowledge Forums. Intel Corporation and Wind River Systems are not responsible for ensuring the privacy of data on the Knowledge Forums.

This section guides you through accessing and using the Intel® IoT Gateway Knowledge Forum.

Accessing the Forum

Use the following steps to create a Wind River account and log in to the forum.

**Note:** You might already have a Wind River support account. If you have an account, disregard Step 1 and begin with Step 2.

1. To create a Wind River support account you must fill out a short form at https://support.windriver.com/selfservicewebapp/register.action. This form requires you to enter your license and LAC keys. You received this information after you registered your Development Kit.

2. Login at https://ask.intel.windriver.com. Use your Wind River Online Support account user name and password.

3. If you have not yet done so, then when prompted, set up a screen name. This is the identity you will use in the online community. Other users will see you by this identity. Do not use your email address for your screen name.
Using the Forum

After you are registered and logged in, you can use the forum to ask questions and search for topics of interest. Submitted questions are posted on the forum and are accessible to all forum users. Forum moderators and Wind River product experts regularly monitor the forum to answer questions. If necessary, your question will be escalated.

Note: If your issue is urgent or related to BSP development on a specific project, create an issue ticket through Intel® Premier Support instead of relying on this forum for answers.

The screen looks like this after you register and log in:

Figure 24. Knowledge Forum Opening Screen
Submitting Questions

Use the following steps to ask a question on the forum.

1. Click **ASK YOUR QUESTION**. See the red box in the following figure.

![Figure 25. Ask Question](image)

2. Title your question in the field provided, as shown:

![Figure 26. Title Question](image)

3. Provide details about your question. To help the support staff to provide accurate and timely guidance, include details about your test / development environment, including:
   - Detailed information about your question.
   - Software, such as Intelligent Device Platform XT release, Wind River Linux version, BIOS, FW, etc.
   - Hardware, such as board, processor SKU, memory, I/O etc.

4. Categorize your question. Add **IOT-Gateway** as a tag in addition to specific product tags. This will allow the support team to track issues related to Intel® IoT Gateway See the following figure.

![Figure 27. Categorize Question](image)
Your selected tags display in a list. You can add or remove tags as necessary. See the following figure.

**Figure 28. Tagged Question**

5. Click **Ask Your Question** to submit the question. See the red box in the following figure.

**Figure 29. Submit Question**
Subscribing to Tags

You can choose to subscribe to specific tags to receive email alerts for issues and updates to questions related to that tag/category. Use the following steps.

1. Select your preferred email setting. See the red box in the following figure.

Figure 30.  Subscribe to Forum Tags

2. Click Change frequency of emails to set up how often you receive email messages.
Appendix B Use Wind River WebIF to Configure the Target Device (Optional)

This appendix guides you through using the Wind River WebIF application. WebIF is a web-based interface used to manage wired, wireless, and 3G connectivity on Intelligent Device Platform XT Target Devices.

How to use WebIF

2. Choose the correct path:

   **Note:** Be sure to use https (not http) for either path.
   - If you used a wireless network connection from your Host System to your Target Device, type the following URL into the internet browser on your Host System: https://192.168.1.1
   - If you used a wired network connection from your Host System to your Target Device, type the following URL into the internet browser on your Host System: https://<TARGET_DEVICE_IP_ADDRESS>, where <TARGET_DEVICE_IP_ADDRESS> is the IP address of your target device.

   **Note:** The Host System and the Target Device must be on the same subnet.

3. Most browsers present a pop-up warning box stating that the security certificate is not recognized. Select the option to tell the browser to disregard the certificate and connect to the Web site. In the following example, you would click I Understand the Risks, and then Add Exception:

**Figure 31. Untrusted Certificate**

![Untrusted Certificate](image-url)
4. Login with user name: admin and password: admin. The Wind River® Intelligent Device Platform XT 2.0 Web Interface (WebIF) console opens. See the figure below.

Figure 32. WebIF Application

The WebIF menus provide a simple interface to allow you to configure the hardware and I/O features of the Target Device. If you are interested in things you can do through this interface, see the Wind River® Intelligent Device Platform XT 2.0 – Programmer’s Guide at https://www-ssl.intel.com/content/www/us/en/embedded/design-tools/evaluation-platforms/gateway-solutions/wind-river-idp-xt2-programmers-guide.html?wapkw=wind+river

Appendix C Building an Intelligent Device Platform Project Using Wind River® Workbench

This appendix provides step-by-step instructions to build a Wind River Intelligent Device Platform project using Wind River Workbench. The steps below guide you through tasks such as selecting configuration options and adding different layers to your project.

This appendix assumes the following:

• Your Host System is running Ubuntu 14.04, 64-bit.
• You used the directory names indicated in Create Directories and Confirm Disk Space on page 26. If you used different directory names, replace the directory names in the steps below with the directories that you created.
• You followed the instructions in Installing the Wind River Host Tools on page 32.
• You know how to deploy a runtime image on your Target Device. See Install Intelligent Device Platform XT Runtime on Target Device on page 47.

Note: These steps will take 2 - 4 hours to complete.

Create the Project

1. Use the following commands to launch Workbench:

   cd $HOME/WindRiver
   ./ startWorkbench.sh

2. Upon launching, Workbench asks for a workspace folder. Type the path or browse to your workspace folder. Suggestion: Use your home folder. See the following figure:

Figure 33. Workspace Location Selection
The application launches.

3. From the main menu, click **File > New > Wind River Workbench Project**, as shown:

**Figure 34. Create a New Workbench Project**

4. Select the target operating system. Choose **Wind River Linux Platform Base 5.0.1**, as shown, and then click **Next**.

**Figure 35. Selecting Target Operating System**
5. Select **Platform** as the build type as shown, and then click **Next**.

**Figure 36. Select Build Type**

![Select Build Type](image)

6. Type a name for your project, and then click **Next**.

**Figure 37. Specify Project Name**

![Specify Project Name](image)

*Important:* You must enable `wr-idp` as an addon before selecting the RootFS type. Make sure you correctly complete steps 7 - 8.
7. Click **Add** and select `-enable-addons=[yes|no|addon[...]]` as shown below.

**Figure 38. Enable Addons**
8. Edit the **Value** field near the bottom of the screen to add wr-idp, and then click the **Reload** button. See the following figure.

*Note:* If you do not click **Reload**, you cannot use glibc-idp as the RoofFS type.

**Figure 39.** Reload Configurations

![Reload Configurations](image)
9. For **RootFS**, select `glibc_idp` as shown:

**glibc_idp Option Available**

10. For **Board**, select the board type appropriate for your Target Device. If your Target Device has an Intel® Atom™ processor, select `intel-atom-baytrail`. If your Target Device has an Intel® Quark™ processor, select `intel-quark`.

11. For **Kernel**, select `standard`. 
12. You are ready to add layers. Click **Add...** as shown below.

**Figure 41. Add Layers**
13. Select **wr-intel-support** as shown below, and then click **Reload**.

**Figure 42. Add wr-intel-support**
14. Select to add the **wr-mcafee** layer as shown:

**Figure 43. Add wr-mcafee Layer**

![Add wr-mcafee Layer](image)

15. Add additional layers as needed.

16. Click the **Add** button in the **Option** group as shown in figure below:

**Figure 44. Adding Options**

![Adding Options](image)
17. Add an option to `-enable-jobs=50`, as shown below. Then click **OK**.

**Figure 45.** enable jobs=50
18. Click **Add** in the **Option** group again.

19. Add an option to `-enable-parallel-pkgbuilds=<number of CPUs>`, where `<number of CPUs>` is the number of CPUs in your system. See the following figure. Then click **OK**.

**Figure 46.** -enable-parallel-pkgbuilds=<number of CPUs>
20. Click **Finish** to finalize your configuration.

**Figure 47.** Finalize Configuration
The configuration script will show a progress screen similar to the following while it executes. Execution will take a few minutes.

**Figure 48. Configuration Script Progress**
Upon completion you will see a summary screen similar to the following:

**Figure 49. Build Configuration Completed**

You are ready to build your project. Follow the steps in the next section.
Build Project

Depending on your configuration items, your selected layers and the processing power of your development system it will take 2 to 4 hours to build your project. The build took approximately 4 hours on a test system that was running an Intel® Core™ i7-4900 processor at 2.8 GHz with Intel® Hyper-Threading technology, and 8 GB RAM.

1. From the main menu, select **Project > Build Project**.

**Figure 50. Build Project**
The project build begins and the progress displays as follows:

**Figure 51. Build Project Progress Window**

2. Optional: Open a terminal window to examine the config file generated by Workbench. The config file looks similar to the following:

**Figure 52. Config File**

```
moon@Gateway04:/TestProject_prj$ cat config.log
Generated by wrlinux configure at Tue Oct 21 16:50:07 MST 2014
moon@Gateway04:/TestProject_prj$
```
Upon completion, the Build Console displays as follows:

**Figure 53. Build Console Displaying Project Completion**

![Build Console Displaying Project Completion](image)

3. Deploy your project to your Target Device.
Appendix D Triage Tool

The Triage Tool is a set of shell scripts designed to collect customer's hardware and software information for efficient issue debugging. One set of scripts is for the host development environment and second set of scripts is for the Target Device. The scripts know the location of information, such as log files, and they know the commands to run to gather the details. The output is a compressed tar file that can be provided to Intel's support team for quick issue resolution. Attach your Triage Tool outputs to Intel® Premier Support issues for faster resolution.

Host System Location and Usage

On your Host System, the script is in the project directory. The example below shows the usage. In the example:

- `-i <install dir>` is the path to Wind River Intelligent Device Platform installation directory
- `-b <Project>` is the path to where you build your project, such as `$HOME/Project`

```
$HOME/Project$ sudo sh ./triage_tool_host.sh -i <install dir> -b <Project>
```

The output is a tar file in your current working directory.

Target Device Location and Usage

On the Target Device the script is in the `/root/examples` directory. The example below shows the usage:

```
root@WR-IntelligentDevice:/root/examples# ./triage_tool_target.sh
```

The output is a tar file in your current working directory.
Appendix E Installing and Configuring PuTTY

This section guides you through installing and configuring a Secured Shell (SSH) / Telnet network protocol utility, named PuTTY. PuTTY is an open source virtual terminal that is available in the Ubuntu 14.04 release.

1. From your Host System $HOME command prompt type the following command to install PuTTY.

   Note: PuTTY is also available from http://ubuntu.com

   ```bash
 sudo apt-get install putty
   ```

2. Type your password at the prompt: [sudo] password for [username]

3. Type y at the prompt: Do you want to continue [Y/n]?

Starting and Configuring PuTTY

1. From your Host System $HOME command prompt, start PuTTY:

   ```bash
 putty
   ```

   The PuTTY Configuration screen is displayed, as shown below:

Figure 54. PuTTY Configuration Screen
2. Make the following changes on this screen:
   - Change **Connection type** to **Serial**. See number 1 in the following figure.
   - Change **Speed** to **115200**. This option will be available after you change the Connection type to Serial. See number 2 in the following figure.

**Figure 55. Change to Serial with Speed of 115200**
3. Under the **Category** menu on the left side of your screen, select **Serial** and change the **Flow control** to **None**. See number 1 and 2 in the following figure:

**Figure 56. Change Flow Control**
4. Under the **Category** menu on the left side of your screen, select **Keyboard** and change the **Function keys and keypad** to **SCO**. See number 1 and 2 in the following figure:

**Figure 57. Change to SCO Function Keys**
**Saving a Session**

1. Under the **Category** menu on the left side of your screen, select **Session**. Name your session as **Intel IoT Gateway**, and then click **Save**. Your session name will be displayed in the **Saved Sessions** list. See the numbered items in the following figure.

*Figure 58. Save Settings*

2. Click **Cancel** to return to your Host Development System command prompt.
Loading Saved Session

This section guides you through loading the Intel IoT Gateway session.

1. Click **Intel IoT Gateway** under **Saved Sessions**. See number 1 in the following figure.
2. Click **Load** to display the Intel IoT Gateway settings. See number 2 in the figure.
3. Change the **Serial line** to /dev/ttyUSB0 and then click Save. See numbers 3 and 4 in the figure.
4. Click **Open** to open a PuTTY Virtual Terminal session. See number 5 in the figure.

**Figure 59. Update Session with Correct tty Port**

A PuTTY Virtual Terminal session displays as a black screen with a cursor in the upper left corner.
Appendix F Troubleshooting

The errata for this version of the platform are shown in the following table.

Table 5. Target Device Errata

<table>
<thead>
<tr>
<th>Errata Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wi-Fi Access Point or Ethernet WAN interface may exhibit functional instability when loaded with concurrent traffic from multiple Wi-Fi and/or Ethernet clients.</td>
<td>Fixed in Wind River® Intelligent Device Platform XT 2.0.4 (March 2015)</td>
</tr>
</tbody>
</table>