Contents

3.9 System BIOS Settings ...67
 3.9.1 GMCH PCI Device Enabling ...67
 3.9.2 Graphics Mode Select (GMS) ..67
 3.9.3 AGP (Accelerated Graphics Port) Aperture Size ...68
3.10 VBIOS and Driver Configuration ...68
3.11 Configuration Options ..71
3.12 Display Detection and Initialization ..78
 3.12.1 Display Detect Operation ..78
 3.12.2 Detectable Displays ...80
3.13 Advanced EDID Configuration ...80
 3.13.1 Sample Advanced EDID Configurations ..81
 3.13.2 User-Specified DTDs ..81
3.14 Using an External PCI Graphics Adapter as the Primary Device82
3.15 Hybrid Multi-monitor ...84
3.16 Enhanced Clone Mode Support ...85
 3.16.1 Extended Clone Mode CED Configuration ...85
 3.16.2 Sample Clone Mode Configurations ...87
3.17 Scaling and Centering Configurations ..88
 3.17.1 Upscaling for the Chrontel CH7308 LVDS Transmitters ...88
 3.17.2 Internal LVDS Scaling with EDID Panels ..89
 3.17.3 Centering Primary Display with Scaling Encoders ..89
 3.17.4 Enabling Render Scaling on Port Encoders without Hardware Scaling89
 3.17.5 Alignment in Clone Mode ..90
4.0 VBIOS ..91
 4.1 Overview ...91
 4.2 System Requirements ...91
 4.3 Configuring and Building the VBIOS with CED ..92
 4.3.1 Selecting the Build Folder ...93
 4.3.2 Configuring the Video BIOS ...93
 4.3.2.1 COMMON_TO_PORT ...94
 4.3.2.2 post_display_msg ...94
 4.3.2.3 OEM Vendor Strings ...94
 4.3.3 Building the VBIOS ...95
 4.4 VBIOS, Driver Compatibility, and Data Dependencies ..99
 4.5 VESA and VGA Video Modes ..99
5.0 Configuring and Installing Microsoft Windows Drivers ...103
 5.1 Editing the Microsoft Windows INF File ..103
 5.2 Configuration Information ..103
 5.2.1 Universal INF Configuration ..103
 5.2.2 INF File Backward Compatibility ..104
 5.2.2.1 INF File Backward Compatibility with IEGD Version 4.0104
 5.2.3 Dual Panel Configuration ...104
 5.2.4 Chipset Dual Display Example ..105
 5.2.5 Creating Registry Settings for Graphics Driver INF File ..105
 5.2.6 Dynamic Port Driver Configuration ..107
 5.2.6.1 iegd.PortDrvs_xxx ...107
 5.2.6.2 SourceDisksFiles ...108
 5.2.6.3 PortDrivers Registry Key ...108
 5.2.7 Creating an .sld file for Microsoft Windows XP Embedded Systems109
 5.2.8 Changing Default Display Mode ..109
7.3.5 Installing Red Hat Embedded (for Intel® US15W/US15WP/WPT only).................. 158
 7.3.5.1 Creating the IEGD Kernel Module ... 158
 7.3.5.2 Installing IEGD on a Red Hat Embedded System 159
 7.3.5.3 Installing Codecs ... 161
7.3.6 Installing Ubuntu IEGD Driver and Codec (for Intel® US15W/US15WP/WPT only) ... 161
 7.3.6.1 Installing the Ubuntu OS ... 162
 7.3.6.2 Installing the IEGD Driver for Ubuntu .. 167
 7.3.6.3 Installing the Helix DBus Server ... 169
7.3.7 Installing Moblin 2.1 IVI (for Intel® US15W only) 170
 7.3.7.1 Install the Pre-integrated Moblin Image ... 170
 7.3.7.2 Manually Installing IEGD ... 170
 7.3.7.3 Preparing for the Intel Embedded Graphics Driver Installation 170
 7.3.7.4 Installing the Intel Embedded Graphics Driver (IEGD) for Moblin 2.1 ... 171
 7.3.7.5 Known Issues .. 173
7.4 IKM Patch Instructions .. 173
 7.4.1 Finding and Installing the Kernel Source (Headers) 173
 7.4.2 Installing IKM with Fedora ... 173
 7.4.3 Using the IEGD Kernel Module .. 174
 7.4.4 Linux Installer IKM Validation ... 175
 7.4.4.1 AGP Test .. 175
 7.4.4.2 DRM Test ... 175
 7.4.4.3 Kernel Checker ... 175
7.5 Uninstalling the IKM .. 179
7.6 Configuring Linux* ... 179
 7.6.1 Configuration Overview ... 179
 7.6.2 Linux* OS Configuration Using CED .. 180
 7.6.3 Editing the Linux* OS Configuration File Directly 180
 7.6.4 The Linux* OS Configuration File ... 180
 7.6.4.1 Device Section ... 183
 7.6.4.2 Screen Section .. 185
 7.6.4.3 Monitor Section .. 186
 7.6.4.4 ServerLayout Section ... 186
 7.6.4.5 ServerFlags Section .. 186
 7.6.5 Xorg* Configuration Options ... 187
 7.6.6 Sample Dual Independent Head (DIH) Configuration 190
 7.6.7 Video Memory Management ... 192
 7.6.8 Configuring Accelerated Video Decode for IEGD and Intel® System Controller Hub US15W .. 192
 7.6.8.1 Hardware Video Acceleration Overview .. 192
 7.6.8.2 IEGD Driver ... 193
 7.6.8.3 Installing the VA Library (version 0.29) .. 193
 7.6.8.4 Installing the IEGD Video Acceleration Driver 193
 7.6.8.5 Installing Helix Framework ... 194
 7.6.8.6 Installing Intel® Media Codec ... 194
 7.6.8.7 Playing Video .. 194
 7.6.8.8 Troubleshooting ... 195
 7.6.9 Graphics Port Initialization .. 195
 7.6.10 OpenGL Support ... 196
 7.6.10.1 OpenGL Installation ... 197
 7.6.10.2 OpenGL Use Considerations ... 199
 7.6.10.3 OpenGL ES .. 199
 7.6.11 Sample Advanced EDID Configurations for Linux* OS 199
 7.6.12 AGP GART Errors .. 200
Contents

7.7 Runtime Configuration GUI ... 200
7.7.1 iegdgui Setup .. 201
7.7.2 Using the iegdgui Runtime Configuration Utility 201

A Example INF File .. 207

B Port Driver Attributes .. 213
B.1 Standard Port Driver Attributes .. 213
B.2 Port Driver Attributes .. 215
 B.2.1 Internal LVDS Port Driver Attributes (Mobile chipsets only) 215
 B.2.2 CRT (Analog) Port Driver Attributes .. 216
 B.2.3 HDMI Port Driver Attributes .. 216
 B.2.3.1 Audio .. 216
 B.2.3.2 SDVO-HDMI (CH7315) ... 217
 B.2.3.3 Internal HDMI ... 217
 B.2.3.4 HDCP .. 217
 B.2.4 Internal TV Out Port Driver Attributes (Mobile chipsets only) 217
 B.2.5 Chrontel CH7307 Port Driver Attributes 218
 B.2.6 Chrontel CH7308 Port Driver Attributes 218
 B.2.7 Chrontel CH7315/CH7319/CH7320 Port Driver Attributes 219
 B.2.8 Chrontel CH7317 Port Driver Attributes 219
 B.2.9 Chrontel CH7022 Port Driver Attributes 220
 B.2.10 Silicon Image SiI 1362/SiI 1364 Port Driver DVI Attributes 221

B.3 Chipset and Port Driver-specific Installation Information 222
 B.3.1 Default Search Order ... 222
 B.3.2 Default GPIO Pin Pair Assignments ... 222
 B.3.3 Default I2C Device Address Byte Assignment 223

C Intel® 5F Extended Interface Functions ... 225
C.1 BIOS Extended Interface Functions .. 226
 C.1.1 5F01h – Get Video BIOS Information 226
 C.1.2 5F05h – Refresh Rate ... 227
 C.1.2.1 5F05h, 00h – Set Refresh Rate .. 227
 C.1.2.2 5F05h, 01h – Get Refresh Rate .. 228
 C.1.3 5F10h – Get Display Memory Information 229
 C.1.4 5F1Ch – BIOS Pipe Access ... 229
 C.1.4.1 5F1Ch, 00h – Set BIOS Pipe Access 229
 C.1.4.2 5F1Ch, 01h – Get BIOS Pipe Access 229
 C.1.5 5F29h – Get Mode Information .. 230
 C.1.6 5F61h – Local Flat Panel Support Function 230
 C.1.6.1 5F61h, 05h – Get Configuration ID 230
 C.1.7 5F68h – System BIOS Callback ... 231

C.2 Hooks for the System BIOS ... 231
 C.2.1 5F31h – POST Completion Notification Hook 231
 C.2.2 5F33h – Hook After Mode Set ... 231
 C.2.3 5F35h – Boot Display Device Hook ... 232
 C.2.4 5F36h – Boot TV Format Hook ... 233
 C.2.5 5F38h – Hook Before Set Mode .. 233
 C.2.6 5F40h – Config ID Hook ... 234

D 2D/3D API Support ... 235
D.1 2D Support ... 235
D.2 3D Support ... 235
 D.2.1 OpenGL APIs .. 235
 D.2.2 OpenGL ES 1.1 ... 237
 D.2.3 OpenGL ES 2.0 ... 238
E Framebuffer Overlay Blending ..241
E.1 How Overlay Works...241
E.2 About Framebuffer in “Blend” Mode..242
E.3 Example to Enable the FB_BLEND_OVL Feature ..244
E.4 Summary ..245

Figures
1 Intel Embedded Graphics Suite..21
2 Graphics Driver Architecture ..22
3 Firmware Architecture ..22
4 Sample CED Configuration Start Page ...31
5 IEGD Configuration Editor Main Window...32
6 IEGD DTD Page ...33
7 Chipset Configuration Page ..37
8 Overlay Color Correction Page ..40
9 Framebuffer Color Correction Page ..41
10 Chipset Configuration Page ..42
11 Port Configuration Page ..44
12 Attribute Settings Page for the Chrontel CH7022/CH7307/CH7308 Encoders47
13 sDVO Settings Page ..48
14 Panel Settings Page ..49
15 Fastboot Configuration Page ...51
16 Splash Video with 8 MBytes of Stolen Memory Example ...53
17 Video BIOS Configuration Page..55
18 IEGD Package Editor Page ...58
19 Linux Options Page ..60
20 Windows Options Page ...62
21 EFI Generation Page ..64
22 LVDS Configuration Page ..69
23 IEGD Configuration Editor Page ...70
24 External PCI Graphics Card as Primary Driver and IEGD as Secondary Driver83
25 IEGD as Primary Driver and External PCI Graphics Card as Secondary Driver83
26 IEGD as Primary Driver with Two Displays and External PCI Driving a Tertiary Display ...84
27 Video BIOS Directory Structure ...93
28 Example Runtime Configuration GUI — Driver Info Tab ...114
29 Example Runtime Configuration GUI — Display Config Tab115
30 Example Runtime Configuration GUI — Display Attributes Tab116
31 Example Runtime Configuration GUI — Color Correction Tab117
32 Sample FILES Block from platform.bib File...121
33 Typical Memory Map Using Static Memory Model..127
34 Example xorg.conf File ..181
35 Sample DIH Configuration ...191
36 Example Linux Runtime Configuration GUI — Driver Info Tab202
37 Example Linux* Runtime Configuration GUI — Display Config Tab203
38 Example Linux* Runtime Configuration GUI — Display Attributes Tab204
39 Example Linux* Runtime Configuration GUI — Color Correction Tab (Framebuffer)205
40 Example Linux* Runtime Configuration GUI — Color Correction Tab (Overlay)206
Tables

1. IEGD v10.3.1 New Features ... 16
2. Acronyms and Terminology .. 16
3. Types of Displays .. 23
4. Display Configuration Definitions .. 23
5. Supported Display Configurations ... 24
6. Chipsets Supported by the Intel Embedded Graphics Suite 24
7. SDVO Devices Supported .. 26
8. IEGD DTD Setting Options .. 34
9. Timing Specification Example Values .. 35
10. Chipset Configuration Page Settings ... 38
11. Overlay Color Correction Values (applies to ALL color) .. 39
12. Framebuffer Color Correction Values (applies to R, G, B color) 40
13. Windows CE OS Settings .. 43
14. Port Configuration Settings .. 45
15. I2C Settings ... 48
16. Panel Settings Options .. 50
17. Fastboot Options .. 52
18. Video BIOS Settings Options .. 56
19. IEGD Package Editor Setting Options .. 59
20. Linux OS Settings Options ... 61
21. Windows OS Setting Options .. 63
22. GMCH Device 2, Function 1 BIOS Setting .. 67
23. GMS Settings ... 67
24. Parameter Configuration Format ... 71
25. Detectable Displays .. 80
26. Sample Advanced EDID Configurations .. 81
27. Supported VGA Video Display Modes ... 100
28. VESA Modes Supported by Video BIOS .. 101
29. Example of Chipset Dual Display Parameter Setting .. 105
30. Framebuffer Color Correction Values (applies to R, G, B color) 117
31. Overlay Color Correction Values (applies to ALL color) 117
32. [HKLM\DRIVERS\Display\Intel\] Registry Keys .. 126
33. [HKLM\Drivers\Display\Intel\<platform>
\<config id>\] Registry Keys ... 131
34. PortOrder Information .. 133
35. Memory Management Functions .. 176
36. PCI Related Routines .. 176
37. I/O Functions ... 177
38. Synchronization Functions .. 177
39. Page Related Functions ... 178
40. Linked Lists ... 178
41. Linux Driver Model Specific .. 178
42. CPU/Cache .. 179
43. User Access .. 179
44. Supported Driver Options .. 187
45. Sample Advanced EDID Configurations for Linux* OS 200
46. Standard Port Driver Attributes .. 213
47. Internal LVDS Port Driver Attributes .. 215
48. CRT (Analog) Port Driver Attributes ... 216
49. Internal TV Out Port Driver Attributes .. 217
50. Chrontel CH7307 Port Driver Attributes .. 218
51. Chrontel CH7308 Port Driver Attributes .. 218
52. Chrontel CH7315/CH7319/CH7320 Port Driver Attributes 219
53. Chrontel CH7317 Port Driver Attributes .. 219
Revision History

This document may have been updated since the release shown below. See http://edc.intel.com/Software/Downloads/ for the most recent version.

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2010</td>
<td>029</td>
<td>Updated for use with the version 10.3.1 of the product including support for the Intel® Atom™ Processor 400 and 500 Series. Only IEGD version 10.3.1 provides graphics driver support for the Intel® Atom™ Processor 400 and 500 Series.</td>
</tr>
<tr>
<td>February 2010</td>
<td>028</td>
<td>Updated for use with version 10.3 of the product, including support for the 2D Frame Buffer Alpha Blending mode on US15W, VC-1 VLD video decoding for Windows on US15W, RealPlayer for Netbooks (RP4NB v1.1 media player for Linux, the newest Windows Media Player (WMP) versions, and the newest official Moblin-IVI 2.1 image (dated November 5, 2009).</td>
</tr>
<tr>
<td>December 2009</td>
<td>027</td>
<td>Updated for use with the Preliminary version 10.3 of the product.</td>
</tr>
<tr>
<td>December 2009</td>
<td>026</td>
<td>Updated for use with version 10.2.4 of the product, including enhanced instructions.</td>
</tr>
<tr>
<td>December 2009</td>
<td>025</td>
<td>Updated for use with version 10.2.4 of the product.</td>
</tr>
<tr>
<td>October 2009</td>
<td>024</td>
<td>Updated for use with version 10.2.2 of the product.</td>
</tr>
<tr>
<td>October 2009</td>
<td>023</td>
<td>Updated for use with version 10.2 of the product, including support for IEGD embedded pre-OS graphics feature driver in the Boot Loader Development Kit (BLDK) runtime environment, support for DDSCAPS_OWNDC capabilities for Windows CE 5.0 and CE 6.0, support for Moblin 2.1 release (moblin-ivi-gnome-20090819-001.img) dated August 19, 2009, and support for Windows Embedded CE 6.0 Monthly Update (June 2009).</td>
</tr>
<tr>
<td>September 2009</td>
<td>022</td>
<td>Updated for use with PRELIMINARY version 10.2 of the product, including support for IEGD embedded pre-OS graphics feature driver in the Boot Loader Development Kit (BLDK) runtime environment, support for DDSCAPS_OWNDC capabilities for Windows CE 5.0 and CE 6.0, support for Moblin 2.1 release (moblin-ivi-gnome-20090819-001.img) dated August 19, 2009, and support for Windows Embedded CE 6.0 Monthly Update (June 2009).</td>
</tr>
<tr>
<td>July 2009</td>
<td>021</td>
<td>Updated for use with version 10.1 of the product, including support for Fedora 10, XP/XPe SP3, transparent overlay for Linux and Windows CE 6.0 for Intel® System Controller Hub US15W/WP/WPT chipsets.</td>
</tr>
<tr>
<td>June 2009</td>
<td>020</td>
<td>Updated for use with PRELIMINARY version 10.1 of the product, including support for Fedora 10, XP/XPe SP3, transparent overlay for Linux and Windows CE 6.0 for Intel® System Controller Hub US15W/WP/WPT chipsets.</td>
</tr>
<tr>
<td>March 2009</td>
<td>019</td>
<td>Updated for use with Version 10.0 of the product, including support for Intel® G41, G45, GL40 and GS45 Express chipsets, Intel® System Controller Hub US15WP/WPT, and Ubuntu on 8.0.4 on 945GME/GSE.</td>
</tr>
<tr>
<td>February 2009</td>
<td>018</td>
<td>Updated for use with PRELIMINARY Version 10.0 of the product, including support for Intel® G41, G45, GL40 and GS45 Express chipsets, Intel® System Controller Hub US15WP/WPT, and Ubuntu on 8.0.4 on 945GME/GSE.</td>
</tr>
<tr>
<td>December 2008</td>
<td>017</td>
<td>Updated for use with Version 9.1.1 of the product, including support for the Ubuntu operating system.</td>
</tr>
<tr>
<td>November 2008</td>
<td>016</td>
<td>Updated for use with PRELIMINARY Version 9.1.x of the product, including support for the Ubuntu operating system.</td>
</tr>
<tr>
<td>October 2008</td>
<td>015</td>
<td>Updated for use with Version 9.1 of the product, including support for the Intel® Q45 Express chipset.</td>
</tr>
<tr>
<td>Date</td>
<td>Revision</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>June 2008</td>
<td>014</td>
<td>Updated for use with Version 9.0 of the product, including support for the Intel® System Controller Hub US15W, Mobile Intel® GM45 Express chipset.</td>
</tr>
<tr>
<td>October 2007</td>
<td>013</td>
<td>Updated for use with Version 8.0 of the product, including support for the Intel® Q35.</td>
</tr>
<tr>
<td>June 2007</td>
<td>012</td>
<td>Updated for use with Version 7.0 of the product, including support for the Intel® Mobile Intel® GME965 and Mobile Intel® 910GMLE chipsets.</td>
</tr>
<tr>
<td>December 2006</td>
<td>011</td>
<td>Updated for use with Version 6.1 of the product.</td>
</tr>
<tr>
<td>September 2006</td>
<td>010</td>
<td>Updated for use with Version 6.0 of the product, including support for the Intel® Q965 and Damn Small Linux*.</td>
</tr>
<tr>
<td>June 2006</td>
<td>009</td>
<td>Updated for use with Version 5.1 of the product, including support for the Texas Instruments TFP410* DVO encoder, Microsoft Windows Embedded for Point of Service (WEPOS)* operating system, and SuSE 10.</td>
</tr>
<tr>
<td>February 2006</td>
<td>008</td>
<td>Updated for use with Version 5.0 of the product, including support for the Intel® 892GM, Intel® 945G, and Intel® 945GM chipsets, the Silicon Image SiI 1362* and SiI 1364* sDVO transmitters, and External PCI as a Primary graphics adaptor.</td>
</tr>
<tr>
<td>October 2005</td>
<td>007</td>
<td>Updated for use with Version 4.1 of the product.</td>
</tr>
<tr>
<td>June 2005</td>
<td>006</td>
<td>Updated for use with Version 4.0 of the product, including support for the Intel® 915GV and Intel® 915GM chipsets, the Chrontel CH7307* and Chrontel CH7308* sDVO transmitters, and Advanced EDID Configuration.</td>
</tr>
<tr>
<td>May 2005</td>
<td>005</td>
<td>Updated for use with Version 3.4 of the product, including use of the enhanced Video BIOS, Windows* installer/uninstaller, runtime configuration GUIs, and display discovery feature.</td>
</tr>
<tr>
<td>July 2004</td>
<td>004</td>
<td>Updated for use with Version 3.2 of the product, including use of the dynamic port driver feature.</td>
</tr>
<tr>
<td>May 2004</td>
<td>003</td>
<td>Updated for usage with version 3.1 of the product, including details on PCF format and usage, Universal INF format, and updates to the User Build System.</td>
</tr>
<tr>
<td>February 2004</td>
<td>002</td>
<td>Updated chipset support to reflect current Embedded IA32 roadmap.</td>
</tr>
<tr>
<td>February 2004</td>
<td>001</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
1.0 Introduction

The Intel® Embedded Graphics Drivers (IEGD) comprise a suite of multi-platform graphics drivers designed to meet the requirements of embedded applications. Featuring Intel® Dynamic Display Configuration Technology (DDCT), the drivers run on the following Embedded Intel® Architecture (eIA) chipsets:

- Intel® Atom™ Processor 400 and 500 Series (CPU+GPU combination)
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
- Intel® 915GV Express chipset
- Mobile Intel® 915GME Express chipset
- Mobile Intel® 910GMLE Express chipset

Note: If you need support for a chipset that is not listed above but is in the same family as those listed, please contact your Intel representative.

The IEGD supports five types of display devices:

- Analog CRT
- LVDS flat panels
- TMDS DVI displays
- HDMI
- TV Output

The IEGD is designed to work with fixed-function systems, such as Point-of-Sale (POS) devices, ATM machines, gaming devices, In-vehicle Information/Entertainment systems, etc. It can be configured to work with various hardware and software systems and supports both Microsoft Windows* and Linux* operating systems, including embedded versions of these operating systems.

The Intel Embedded Graphics Suite consists of both the IEGD and a Video BIOS (VBIOS) component. These two components are configurable and work together to provide a wide range of features. This document provides information on configuring and using both the IEGD and the VBIOS.
The IEGD provides the following features:

- Enhanced VBIOS and EFI support
- Dynamic Port Drivers
- Support for Dual Independent Head (DIH) displays
- Support of a Universal INF file
- EDID and EDID-less display support
- Display discovery and initialization
- Direct 3D* support
- Installer/Uninstaller GUI for Microsoft Windows* OS
- Runtime configuration GUI for Microsoft Windows OS and Linux OS
- OpenGL and OpenGL ES supported in specific chipsets and OS (refer to Appendix D for details)

1.1 **Purpose**

This manual provides information on both firmware and software, providing hardware design considerations, installation requirements, and static configuration options.

1.2 **Intended Audience**

This document is targeted at all platform and system developers who need to interface with the graphics subsystem. This includes, but is not limited to: platform designers, system BIOS developers, system integrators, original equipment manufacturers, system control application developers, as well as end users.

1.3 **Related Documents**

The following documents provide additional information on the hardware supported by the IEGD.

- *Intel® Atom™ Processor 400 and 500 Series Datasheets* – Volume One (Document Number 322847) and Volume Two (Document Number 322848)
- *Intel® Embedded Graphics Drivers Version 10.3.1* (Document Number: 315587)
- *Intel® Embedded Graphics Drivers Version 10.3.1 Feature Matrix* (Document Number: 317416)
- *Intel® Atom™ Processor Z5xx Series Datasheet* (Document Number: 319535)
- *Intel® System Controller Hub (Intel® SCH) Datasheet* (Document Number: 319537)
- *Intel® 35 Express Chipset Family Datasheet* (Document Number: 31696602)
- *Intel® I/O Controller Hub 9 (ICH9) Family Datasheet* (Document Number: 31696602)
- *Mobile Intel® GME965 Express Family Chipset for Embedded Datasheet* (Document Number: 31627303)
- *Mobile Intel® 965 Express Chipset Family Datasheet* (Document Number: 316273)
Introduction

• **Intel® 965 Express Chipset Family Datasheet**
 (Document Number: 313053)

• **Mobile Intel® 915PM/GM/GMS and 910GML Express Chipset Datasheet**
 (Document Number: 305264)

• **Intel® 915G/915GV/915P Express Chipset Datasheet**
 (Document Number: 304467)

• **Intel® I/O Controller Hub 6 (ICH6) Family Datasheet**
 (Document Number: 301473)

• **IEGD Linux Kernel Module Porting and Patching Methods White Paper**
 (Document Number: 435867)

• **Integrated Dual Independent Display on Intel® Digital Security Surveillance Multifunction Platforms Application Brief**

• **Display Panel Debugging with the Intel Graphics Memory Controller Hub**
 (Document Number: 305964)

• **Hybrid Multi-monitor Support; Enabling new usage models for Intel® Embedded Platforms White Paper**
 (Document Number: 323214)

• **VESA BIOS Extensions/Display Data Channel Standard**, available at the following Web address:

 This document provides information on the 4F VBE functions, which are supported by the Intel embedded Video BIOS.

• **VESA BIOS Extension (VBE) Core Functions Standard Version 3.0**, available at the following Web address:

 Contains information on the VESA BIOS Extension (VBE) specification for standard software access to graphics display controllers that support resolutions, color depths, and framebuffer organizations beyond the VGA hardware standard.

1.4 Conventions

The following conventions are used throughout this document.

<table>
<thead>
<tr>
<th>Boldface</th>
<th>Represents text that you type and text that appears on a screen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italics</td>
<td>Introduces new terms and titles of documents.</td>
</tr>
<tr>
<td>Courier New</td>
<td>Identifies the names of files, executable program names, and text that appears in a file.</td>
</tr>
<tr>
<td>Angle Brackets (<>)</td>
<td>Encloses variable values in syntax or value ranges that you must replace with actual values.</td>
</tr>
<tr>
<td>**Vertical Bar (</td>
<td>)**</td>
</tr>
</tbody>
</table>
1.5 New Features for Version 10.3.1

The table below presents new IEGD features and capabilities.

Table 1. IEGD v10.3.1 New Features

<table>
<thead>
<tr>
<th>New Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics Driver support for Intel® Atom™ Processor 400 and 500 Series. Operating systems supported for Intel® Atom™ Processor 400 and 500 Series by IEGD v10.3.1 are:</td>
</tr>
<tr>
<td>Microsoft: Windows XP (SP3), Windows XP Embedded (SP3), Windows Embedded for Point of Service, Windows Embedded CE 6.0 R2</td>
</tr>
<tr>
<td>— Includes DirectDraw (DirectX* 9.0c, DirectX 8.1, DirectX 3), Direct3D* (DirectX 9.0c, DirectX 8.1) and DirectX Texture Compression (DXTC)</td>
</tr>
<tr>
<td>Linux: Fedora* 10 (kernel 2.6.27, X.org 1.5)</td>
</tr>
<tr>
<td>— Includes OpenGL 1.4</td>
</tr>
<tr>
<td>• DOS* Support (IBM PC 2000,* MS 6.22)</td>
</tr>
<tr>
<td>Registry key set by default to enable software rendering for user interface content based on the Windows Presentation Foundation (WPF) graphical subsystem. This allows for better WPF rendering performance and lower CPU Utilization; for US15W only.</td>
</tr>
<tr>
<td>Hybrid multi-monitor support defined as a PCI- and PCI Express*-based graphics card operating concurrently with Intel's chipset's integrated graphics is supported fully with IEGD and the Q45/G41/G45 and GM45/GL40/GS45 chipsets (see Section 3.1 for details)</td>
</tr>
</tbody>
</table>

This release also contains resolutions for errata. For details on errata, including status information, refer to the specification update located at the Intel Premier Support Web site (premier.intel.com) and the Intel® Embedded Design Center (http://edc.intel.com).

1.6 Acronyms and Terminology

The table below lists the acronyms and terminology used throughout this document.

Table 2. Acronyms and Terminology (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD Card</td>
<td>APG Digital Display. An adapter card that can be inserted into the PCIe x16 port of Intel chipset family-based systems. ADD cards allow configurations for TV-out, LVDS, and TMDS output (i.e., televisions, digital displays, and flat panel displays).</td>
</tr>
<tr>
<td>AIM</td>
<td>Add In Module.</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface.</td>
</tr>
<tr>
<td>BDA</td>
<td>BIOS Data Area. A storage area that contains information about the current state of a display, including mode number, number of columns, cursor position, etc.</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input/Output System. The IEGD interacts with two BIOS systems: system BIOS and Video BIOS (VBIOS). VBIOS is a component of the system BIOS.</td>
</tr>
<tr>
<td>BLDK</td>
<td>Boot Loader Development Kit</td>
</tr>
<tr>
<td>CED</td>
<td>Configuration EDitor. Graphical pre-installation utility allows easy creation of consolidated driver installation packages for Windows*, Windows CE*, and Linux * operating systems, and VBIOS across numerous platforms and display combinations.</td>
</tr>
<tr>
<td>Clone Display Configuration</td>
<td>A type of display configuration that drives two display devices, each displaying the same content, but can have different resolutions and (independent) timings. Compare Twin Display Configuration and DIH Display Configuration.</td>
</tr>
</tbody>
</table>
Table 2. Acronyms and Terminology (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Contrast is the measure of the difference between light and dark on a display. If the contrast is increased, the difference between light and dark is increased. So something white will be very bright and something black will be very dark.</td>
</tr>
<tr>
<td>COPP</td>
<td>Certified Output Protection Protocol® (COPP) is a Microsoft-defined API to provide application with information about what output protection options are available on a system.</td>
</tr>
<tr>
<td>D3D</td>
<td>Microsoft Direct3D®, a 3D graphics API as a component of DirectX® technology.</td>
</tr>
<tr>
<td>DC</td>
<td>Display Configuration</td>
</tr>
<tr>
<td>DDCT</td>
<td>Intel® Dynamic Display Configuration Technology</td>
</tr>
<tr>
<td>DirectDraw®</td>
<td>A component of the DirectX® Graphics API in Microsoft Windows OS.</td>
</tr>
<tr>
<td>DIH Display Configuration</td>
<td>Dual Independent Head. A type of display configuration that supports two displays with different content on each display device. The IEGD supports Extended mode for Microsoft Windows systems and Xinerama for Linux systems.</td>
</tr>
<tr>
<td>DTD</td>
<td>Detailed Timing Descriptor. A set of timing values used for EDID-less devices.</td>
</tr>
<tr>
<td>DVI</td>
<td>Digital Video Interface.</td>
</tr>
<tr>
<td>DVO</td>
<td>Digital Video Output</td>
</tr>
<tr>
<td>EBDA</td>
<td>Extended BIOS Data Area. An interface that allows the system BIOS and Option ROMs to request access to additional memory.</td>
</tr>
<tr>
<td>EDID</td>
<td>Extended Display Identification Data. A VESA standard that allows the display device to send identification and capabilities information to the IEGD. IEGD reads all EDID data, including resolution and timing data, from the display, thus negating the need for configuring DTD data for the device.</td>
</tr>
<tr>
<td>EDID-less</td>
<td>A display that does not have the capability to send identification and timing information to the driver and requires DTD information to be defined in the driver.</td>
</tr>
<tr>
<td>EFI</td>
<td>Extensible Firmware Interface.</td>
</tr>
<tr>
<td>eIA</td>
<td>Embedded Intel® Architecture.</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference.</td>
</tr>
<tr>
<td>EPOG</td>
<td>Embedded Pre-OS Graphics feature</td>
</tr>
<tr>
<td>Extended Clone Mode</td>
<td>A feature that allows you to have different sized displays in Clone mode.</td>
</tr>
<tr>
<td>Framebuffer</td>
<td>A region of physical memory used to store and render graphics to a display.</td>
</tr>
<tr>
<td>GEN3</td>
<td>Napa Graphics Core in 910/915 family chipset.</td>
</tr>
<tr>
<td>GEN3.5</td>
<td>Napa+ Graphics Core in 945 family chipset.</td>
</tr>
<tr>
<td>GEN4</td>
<td>Graphics Core in 965 family chipset.</td>
</tr>
<tr>
<td>GEN5</td>
<td>Graphics Core in the GL40/GM45 family chipset.</td>
</tr>
<tr>
<td>GDI</td>
<td>Graphics Device Interface. A low-level API used with Microsoft Windows operating systems.</td>
</tr>
<tr>
<td>GMA</td>
<td>Intel Graphics Media Accelerator. Refers to both the graphic hardware in Intel chipsets as well as the desktop/mobile driver. The GMA driver is not intended for use in embedded applications.</td>
</tr>
<tr>
<td>GMCH</td>
<td>Graphics and Memory Controller Hub.</td>
</tr>
<tr>
<td>GMS</td>
<td>Graphics Mode Select (stolen memory).</td>
</tr>
<tr>
<td>HAL</td>
<td>Hardware Abstraction Layer. An API that allows access to the Intel® chipsets.</td>
</tr>
</tbody>
</table>
Table 2. Acronyms and Terminology (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDCP</td>
<td>High-bandwidth Digital-Content Protection, a specification that uses the DVI interface. HDCP encrypts the transmission of digital content between the video source, or transmitter and the digital display, or receiver.</td>
</tr>
<tr>
<td>HDMI</td>
<td>High-Definition Multimedia Interface, an uncompressed, all-digital audio/video interface.</td>
</tr>
<tr>
<td>IAL</td>
<td>Interface Abstraction Layer. An API that allows access to graphics interfaces including the GDI, and DirectDraw*.</td>
</tr>
<tr>
<td>iDCT</td>
<td>Inverse Discrete Cosine Transformation (Hardware feature).</td>
</tr>
<tr>
<td>IEGD</td>
<td>Intel® Embedded Graphics Drivers</td>
</tr>
<tr>
<td>IEGS</td>
<td>Intel® Embedded Graphics Suite. Runtime graphics driver plus a VBIOS component.</td>
</tr>
<tr>
<td>IKM</td>
<td>IEGD Kernel Module</td>
</tr>
<tr>
<td>INF file</td>
<td>A standard Microsoft Windows text file, referred to as an information file, used by Microsoft Windows OS to provide information to the driver. The default .inf file for the IEGD is <code>iegd.inf</code>. You can create customized parameters using the CED utility.</td>
</tr>
<tr>
<td>LPCM</td>
<td>Linear Pulse Code Modulation (LPCM) is a method of encoding audio information digitally. The term also refers collectively to formats using this method of encoding.</td>
</tr>
<tr>
<td>LVDS</td>
<td>Low Voltage Differential Signaling. Used with flat panel displays, such as a laptop computer display.</td>
</tr>
<tr>
<td>NTSC</td>
<td>National Television Standards Committee. An analog TV standard used primarily in North and Central America, Japan, the Philippines, South Korea, and Taiwan.</td>
</tr>
<tr>
<td>OAL</td>
<td>Operating System Abstraction Layer. An API that provides access to operating systems, including Microsoft Windows and Linux.</td>
</tr>
<tr>
<td>Option ROM (OROM)</td>
<td>Code which is integrated with the system BIOS and resides on a flash chip on the motherboard. The Intel Embedded Video BIOS is an example of an option ROM.</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>PAL</td>
<td>Phase Alternating Lines. An analog TV standard used in Europe, South America, Africa, and Australia.</td>
</tr>
<tr>
<td>PCF</td>
<td>Parameters Configuration File</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interface.</td>
</tr>
<tr>
<td>Port Driver</td>
<td>A driver used with the sDVO interfaces of the Graphics and Memory Controller Hub (GMCH).</td>
</tr>
<tr>
<td>POST</td>
<td>Power On Self Test.</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation.</td>
</tr>
<tr>
<td>Reserved Memory</td>
<td>A region of physical memory in a Windows CE* system set aside for BIOS, VBIOS, and Graphics Driver operations. Reserved memory can be configured to be used by the operating system and other applications when not in use by the BIOS.</td>
</tr>
<tr>
<td>Saturation</td>
<td>Monitors and scanners are based on the “additive” color system using RGB, starting with black and then adding Red, Green, and Blue to achieve color. Full saturation of RGB gives the perception of white, and images are created that radiate varying amounts of RGB, or varying saturation of RGB.</td>
</tr>
<tr>
<td>SCART</td>
<td>French Acronym - Syndicat des Constructeurs d’Appareils Radiorecepteurs et Téléviseurs. A video interface possessing up to four analog signals (Red/Green/Blue/Composite PAL). S-Video (Luma/Chroma) is possible over the SCART interface as well.</td>
</tr>
<tr>
<td>SCS</td>
<td>Software Compliance Statement</td>
</tr>
</tbody>
</table>
Table 2. Acronyms and Terminology (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sDVO</td>
<td>Serial Digital Video Output.</td>
</tr>
<tr>
<td>Single Display Configuration</td>
<td>A type of display configuration that supports one and only one display device.</td>
</tr>
<tr>
<td>SSC</td>
<td>Spread Spectrum Clock.</td>
</tr>
<tr>
<td>Stolen Memory</td>
<td>A region of physical memory (RAM) set aside by the system BIOS for input and output operations. The amount of stolen memory is configurable. Stolen memory is not accessible to the operating system or applications.</td>
</tr>
<tr>
<td>System BIOS</td>
<td>The standard BIOS used for basic input and output operations on PCs.</td>
</tr>
<tr>
<td>TMDS</td>
<td>Transitioned Minimized Differential Signaling. Used with DVI displays, such as plasma TVs.</td>
</tr>
<tr>
<td>TOM</td>
<td>Top Of Memory.</td>
</tr>
<tr>
<td>TSR</td>
<td>Terminate and Stay Resident. A program that is loaded and executes in RAM, but when it terminates, the program stays resident in memory and can be executed again immediately without being reloaded into memory.</td>
</tr>
<tr>
<td>Twin Display Configuration</td>
<td>A type of display configuration that supports two display devices each of which has the same content, resolution, and timings. Compare Clone Display Configuration. Note: Twin configuration is not supported on US15W series chipsets.</td>
</tr>
<tr>
<td>UBS</td>
<td>User Build System. A process for building a VBIOS.</td>
</tr>
<tr>
<td>VBIOS</td>
<td>Video Basic Input Output System. A component of system BIOS that drives graphics input and output.</td>
</tr>
<tr>
<td>VESA</td>
<td>Video Electronics Standards Organization.</td>
</tr>
<tr>
<td>VGA</td>
<td>Video Graphics Array. A graphics display standard developed by IBM* that uses analog signals rather than digital signals.</td>
</tr>
<tr>
<td>VLD</td>
<td>Variable Length Decoding.</td>
</tr>
<tr>
<td>VMR</td>
<td>Video Mixing Render.</td>
</tr>
<tr>
<td>WHQL</td>
<td>Windows* Hardware Quality Labs. WHQL is a testing organization responsible for certifying the quality of Windows drivers and hardware that runs on Windows operating systems.</td>
</tr>
<tr>
<td>YUV</td>
<td>The Y in YUV stands for “luma,” which is brightness, or lightness, and black and white TVs decode only the Y part of the signal. U and V provide color information and are “color difference” signals of blue minus luma (B-Y) and red minus luma (R-Y).</td>
</tr>
</tbody>
</table>
1.7 Downloading the IEGD and Video BIOS

The IEGD and the Video BIOS (VBIOS) are available on Intel Premier Support (QuAD) (premier.intel.com) and the Intel Embedded Design Center (http://edc.intel.com/Software/Downloads/IEGD/#download) only. The download package includes:

- IEGD drivers and VBIOS for Linux* operating systems and all Windows* operating systems
- Intel Embedded Graphics Driver Configuration Editor (CED) release which includes an online help system

*Note: CED currently runs only on Windows operating systems.

*Note: The Embedded Video BIOS version 10.3.1 is recommended for use with each of the graphics drivers in most cases. Click the following link to see the FAQ page for details on the differences of these versions.

After you have downloaded, installed, and run CED, you can configure and customize the drivers and VBIOS following the procedures in this document. Once they have been configured, you can integrate the VBIOS with the system BIOS ROM and install the IEGD on your operating system.
2.0 Architectural Overview

2.1 Introduction

The Intel Embedded Graphics Suite (IEGS) is composed of a runtime graphics driver and a Video BIOS (VBIOS) firmware component. (See the illustrations below.) Both the driver and VBIOS control the GMCH to perform display and render operations. The VBIOS is predominantly leveraged by System BIOS during system boot but is also used at runtime by the driver to handle full-screen text mode on Microsoft Windows* operating systems.

Figure 1. Intel Embedded Graphics Suite

![Diagram showing the Intel Embedded Graphics Suite architecture](image-url)
Figure 2. Graphics Driver Architecture

- Application
- Graphics Interface API
- Intel® Embedded Graphics Driver
 - Interface Abstraction Layer (IAL)
 - Hardware Abstraction Layer (HAL)
 - OS Abstraction Layer (OAL)
- GMCH

- IAL
- OAL
- HAL

Figure 3. Firmware Architecture

- System BIOS/Application
- Intel® Embedded Firmware
 - Dispatch
 - VGA
 - VESA
 - Intel API
 - Firmware Port Interface (FPI)
 - CRT and sDVO interface support
- GMCH
2.1.1 Display Options

The following section describes the types of displays and configurations supported by the Intel Embedded Graphics Driver.

2.1.1.1 Types of Displays

The table below lists the types of displays supported by the IEGD.

<table>
<thead>
<tr>
<th>Table 3. Types of Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
</tr>
<tr>
<td>CRT</td>
</tr>
<tr>
<td>Flat Panel</td>
</tr>
<tr>
<td>TV</td>
</tr>
</tbody>
</table>

2.1.1.2 Display Configuration

IEGD supports driving two displays simultaneously. Several configurations are supported, dependent on operating system and chipset. The various display configuration are described in the table below.

<table>
<thead>
<tr>
<th>Table 4. Display Configuration Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Configuration Mode</td>
</tr>
<tr>
<td>Single</td>
</tr>
<tr>
<td>Twin</td>
</tr>
<tr>
<td>Clone</td>
</tr>
<tr>
<td>Extended</td>
</tr>
<tr>
<td>DIH</td>
</tr>
</tbody>
</table>

The table below summarizes which display configurations are supported by Intel chipsets.
Twin and Clone modes are supported by IEGD through custom APIs. In contrast, Extended and DIH are supported natively by both Microsoft Windows and Linux operating systems (X.org*).

2.2 Features

The following sections describe major features supported by IEGD.

2.2.1 Chipsets Supported

The table below lists IEGD-supported chipsets.

All supported chipsets provide support for a single analog output for CRTs. In addition, digital monitors, flat panels and TVs are supported through the GMCH sDVO interface.
2.2.2 OS and API Support

The IEGD and Video BIOS support the following operating systems and APIs. For OpenGL APIs, see Appendix D, “2D/3D API Support”.

- Linux X.org
- Wind River Linux* Platform for Infotainment, Red Hat Embedded Linux (Intel® System Controller Hub US15W/US15WP/WPT only), and Moblin 2.1 IVI
 - DirectX* 8.1 and 9.0 (DirectDraw* and Direct3D*)
- Microsoft Windows CE* 5.0 and 6.0 (Note that Intel® System Controller Hub US15W/US15WP/WPT chipsets and Intel® Atom™ Processor 400 and 500 Series do NOT support Windows CE 5.0)

*Note: The following features are NOT supported in IEGD v10.3.1:
- Microsoft Vista* 2D + 3D
- Vista DirectX 9.0L, DirectX 10.0 (Combine with MS Vista 2D + 3D)

2.2.3 DisplayID Support

The Intel Embedded Graphics Driver supports the newly developed DisplayID specification. DisplayID is a new VESA specification (www.vesa.org) that describes the data format for the display configuration parameters and provides the capability to unify the display data structure thereby decreasing the need to rely on proprietary extensions. For more information on DisplayID, its uses and parameters please reference the VESA specification (www.vesa.org).

2.2.4 EDID-Less Configuration

EDID-less support is the ability to run a display panel that does not have display timing information within the panel. Therefore, the user has to provide the display timing information to the graphics drivers. For the IEGD, this must be done through:

- CED
- Configuration file for the graphics drivers.

This document describes only the necessary edits to the configuration files that are required to implement the graphics driver and VBIOS, and not specific settings for EDID-less panel configuration. Please refer to the manufacturer’s specifications for the DTD settings to use for your EDID-less panels.

2.2.4.1 EDID-Less Panel Type Detection

The Intel Embedded Graphics Suite supports EDID-less displays that do not export timing modes. This is accomplished by allowing configuration of a Detailed Timing Descriptor (DTD), and associating that DTD with a specific display port. The IEGD provides further flexibility in allowing numerous DTDs to be defined and having the selection of the DTD be configurable though selection of Configuration IDs. The selection of the Configuration ID can be done from the System BIOS, as long as it supports the Intel 5F40h function and passes the appropriate Configuration ID to the VBIOS. The VBIOS in turn notifies the Graphics Driver of which Configuration ID is active. This is not required however, but the VBIOS and/or Graphics Driver require the Configuration ID to be set prior to installation.
2.2.5 sDVO Devices

The IEGD supports many third-party digital transmitters connected to the sDVO ports of the GMCH. The driver code that supports each of these devices is abstracted and is a separate driver called a port driver. Port drivers can be dynamically loaded at the time IEGD is initialized, and IEGD can be configured to allow any number of these port drivers to be loaded. By default, all the port drivers for the devices listed in the following table as Included in Release Package will be loaded by default if the corresponding transmitter is detected. If a port driver is not specified in the configuration before installation, that device will not be detected, and the port driver will not be loaded. The configuration can be modified before installation to prevent certain port drivers from being loaded or to include additional port drivers to load.

Table 7. SDVO Devices Supported

<table>
<thead>
<tr>
<th>Device</th>
<th>VBIOS/EPOG/EFI Video Driver Support</th>
<th>Graphics Driver Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal LVDS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Internal TV Out</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7022* RGB VGA/SDTV/HDTV out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7307* Single-port DVI out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7308* LVDS out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7317* RGB VGA out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7315* HDMI out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7319* Dual-port DVI out with HDCP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrontel CH7320* Dual-port DVI out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Silicon Image SiI 1362* Single-port DVI out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Silicon Image SiI 1364* Single-port DVI out</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
2.2.6 Rotation

Rotation is the ability to rotate the display for the Intel Embedded Graphics Driver. Rotation support includes 0°, 90°, 180°, 270°. Rotation is supported only on the following chipsets using Windows XP*, and Linux operating systems:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Mobile Intel® 945GM Express chipset
- Intel® 945G Express chipset
- Intel® 915GV Express chipset
- Mobile Intel® 915GME Express chipset
- Mobile Intel® 910GML Express chipset

Note: Rotation is not supported with the VBIOS. Rotation is supported with Windows CE* but only in static mode.
This page is intentionally left blank.
3.0 Platform Configuration Using CED

The Intel® IEGD Configuration Editor (CED) is a Windows-based Graphical User Interface (GUI) that allows you to create configurations, package the configurations, and create installations that can be loaded directly on a specific OS or Video BIOS platform. Configurations are associated with a specific chipset and can be created for any one of the following supported chipsets:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
- Intel® 915GV Express chipset
- Mobile Intel® 915GME Express chipset
- Mobile Intel® 910GML Express chipset

IEGD configurations can be created for the following supported operating systems and Video BIOS:

- Linux X.org
- Fedora 7 (not supported with the Intel® System Controller Hub US15W/US15WP/WPT chipset and Intel® Atom™ Processor 400 and 500 Series)
- Fedora 10
- Wind River Platform for Infotainment Linux and Red Hat Embedded Linux (Intel® System Controller Hub US15W/US15WP/WPT only), Ubuntu, and Moblin 2.1 IVI.
- Microsoft Windows Embedded Standard 2009*, Microsoft Windows XP* SP3, Microsoft Windows XP Professional* SP3, Microsoft Windows XP Embedded* SP3, and Microsoft WEPOS* SP3:
 - DirectX® 8.1 and 9.0 (DirectDraw® and Direct3D®)
- Microsoft Windows CE 5.0 and 6.0 (Note that Intel® System Controller Hub US15W chipset does NOT support Windows CE 5.0)

Note: The following features are NOT supported in IEGD v10.3.1:

- Microsoft Vista* 2D + 3D (WDDM)
- Vista DirectX 9.0L, DirectX 10.0 (Combine with MS Vista 2D + 3D)
The CED GUI is designed for ease of use and configuration of the IEGD. Online help is available for each configuration page and each data field is validated. If you enter an incorrect value, the CED displays an error message at the top of the page and displays the valid range of values for the field. You will not be able to finish a configuration until all fields contain valid values.

The following sections show how to create a configuration for any of the supported chipsets, operating systems, and the IEGD Video BIOS.

- “Starting the CED” on page 31
- “Creating a New Customized DTD” on page 32
- “Creating a New Configuration” on page 36
- “Creating a New Package” on page 57
- “Generating an Installation” on page 66

3.1 Before You Begin

To configure the IEGD software using CED, you will need some information on the panel you are using. This information is usually found in the product specifications. In some cases the terminology used in the CED may not match the labels used in your panel’s product specification. Refer to Table 9, “Timing Specification Example Values” on page 35 for hints on which specs correspond to CED DTD fields. After you obtain the correct specification values, you may need to derive other values for the DTD fields.

3.2 Creating a Configuration in CED – Summary Steps

The following steps present a sample CED configuration.

1. (Optional) If you have custom panels and timings you may want to create your own Detailed Timings Descriptor (DTD); otherwise you can use the standard DTDs provided by CED. If needed, select New DTD.
 - Choose the DTD Type that most closely aligns with your display parameters, enter parameters, and then click Finish. Or, to create a DTD, see “Creating a New Customized DTD” on page 32.

2. Select New Configuration.
 - Enter a name for the configuration, select the mode, chipset, ports, port drivers, DTDs, etc., for the configuration and then click Finish. For details, see “Creating a New Configuration” on page 36.

 - Enter a name for the package, select the configurations for your package, the platforms for the installation, and then click Finish. For details, see “Creating a New Package” on page 57.

4. Select the created package and then select Generate Installation.
 The generated files are placed in the installation folder. The zip files (for Linux, Windows CE, and Windows operating systems) contain the generated iegd.reg, or INF file. For details, see “Generating an Installation” on page 66.
3.3 Starting the CED

To start the IEGD CED, open the folder where you installed the CED and click the \texttt{iegd-ced.exe} icon. The IEGD CED splash window appears for a few moments followed by the IEGD Configuration Editor main window.
From this window, you can create configurations, package the configurations, and create installations from the packages that can be installed directly on a platform. The main window also provides a Console tab that displays information when you build a package or an installation.

The following sections show how to create a configuration for any of the supported chipsets, operating systems, and the IEGD Video BIOS.

3.4 Creating a New Customized DTD

CED allows you to create Dynamic Timings Definitions (DTD) for EDID-less displays or displays for which you do not want to use the display's EDID settings. In either of those cases, you can create your own DTD using the steps below. Otherwise you can use one of the standard DTDs included in CED.

You can create a new DTD by selecting the New DTD by clicking the **New DTD** link at the top of the main CED window, or you can create DTDs for each configured port when you create a new configuration. Any DTDs you create will be available for all configurations.

When you select **New DTD** from the main CED window, the following IEGD DTD Page appears.
Figure 6. IEGD DTD Page

To create a custom DTD setting:

1. From the CED main screen, select New DTD.
2. Enter a name for the DTD in the text box provided, for example, test_LVDS.
3. Using the data sheet from the panel being used, enter the DTD timings in the appropriate fields. Refer to Table 8, “IEGD DTD Setting Options” for field descriptions. The screen will be similar to the example shown in Figure 6.
4. Click Finish.
 The custom DTD is complete.
<table>
<thead>
<tr>
<th>DTD Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter DTD File Name</td>
<td>Enter a name for this customized DTD. This is a required field and the name must be between 1 and 50 characters and may contain spaces and underscores.</td>
</tr>
</tbody>
</table>
| DTD Type | Select the DTD Type that most closely aligns with your display parameters. Options are:
 • **IEGD Parameters:** The IEGD Parameters are the same as the current PCF/CED DTD parameters.
 • **VESA Parameters:** The VESA Parameters allow the user to create a DTD from a VESA monitor timing standard.
 • **Hardware Parameters:** The Hardware Parameters are the parameters that are used by IEGD.
 • **Simple Parameters:** The Simple Parameters (CVT Standard) is a process for computing standard timing specifications. The method for developing Reduced Blanking timings is not included.
 • **Mode Lines:** The Mode Lines are a video timing spec used by X.org. The X.org timing setting for Mode Lines is "name" I A B C D E F G H. For example: "640x480@8bpp" 25.175 640 672 728 816 480 489 501 526.
 • **EDID Block:** The EDID Block is the detailed timing section (18 bytes) of the basic 128-byte EDID data structure. The detailed timing section starts at 36 of the 128-byte EDID data structure. Enter the EDID block 1 byte at a time. Example: a0 0f 20 00 31 58 1c 20 d2 1a 14 00 f6 b8 00 00 00 18 |
| Pixel Clock | Pixel clock value in KHz. Range 0-0x7fffffff |
| DTD Settings Flags | This section allows you to set flags for Interface, Vertical Sync Polarity, Horizontal Sync Polarity, and Blank Sync Polarity. Each field in this section is described below.
 • **Interlaced Display:**
 • Check for Interlaced
 • Cleared for Non-interlaced
 • **Vertical Sync Polarity:**
 • Active Low (Default)
 • Active High
 • **Horizontal Sync Polarity:**
 • Active Low (Default)
 • Active High
 • **Blank Sync Polarity:**
 • Active Low (Default)
 • Active High
 • **Note:** These flags are IEGD-specific and do not correspond to VESA 3.0 flags. |
| Horizontal Sync Offset (Front Porch) in pixels | Specifies the amount of time after a line of the active video ends and the horizontal sync pulse starts (Horizontal Front Porch). Range 0-1023 [10 bits]. |
| Horizontal Sync Pulse Width (Sync Time) in pixels | Width of the Horizontal Sync Pulse (Sync Time) which synchronizes the display and returns the beam to the left side of the display. Range 0-1023 [10 bits]. |
| Horizontal Blank Width (Blank Time) in pixels | This parameter indicates the amount of time it takes to move the beam from the right side of the display to the left side of the display (Blank Time). During this time, the beam is shut off, or blanked. Range 0-4095 [12 bits]. |
| Horizontal Active (Width) in pixels | Number of pixels displayed on a horizontal line (Width). Range 1-32767 [15 bits]. |
3.4.1 DTD Example Specifications

The following table shows example product specifications that can be used in the timing fields.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Standard value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1/ts</td>
<td>29.91 33.231 36.55</td>
<td>MHz</td>
</tr>
<tr>
<td>Period</td>
<td>ts</td>
<td>27.36 30.06 33.43</td>
<td>ns</td>
</tr>
<tr>
<td>Hi-time</td>
<td>tsh</td>
<td>7 – –</td>
<td>ns</td>
</tr>
<tr>
<td>Low-time</td>
<td>ts1</td>
<td>7 – –</td>
<td>ns</td>
</tr>
<tr>
<td>DUTY ratio</td>
<td>th/ti</td>
<td>35 50 65</td>
<td>ns</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup time</td>
<td>tds</td>
<td>7 – –</td>
<td>ns</td>
</tr>
<tr>
<td>Hold time</td>
<td>tdh</td>
<td>4 – –</td>
<td>ns</td>
</tr>
<tr>
<td>H sync.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>tpl, tipd</td>
<td>24.51 31.75 32.05</td>
<td>us</td>
</tr>
<tr>
<td></td>
<td></td>
<td>880 1056 1088</td>
<td>clk</td>
</tr>
<tr>
<td>Pulse width</td>
<td>tw</td>
<td>3 128 200</td>
<td>clk</td>
</tr>
<tr>
<td>H display</td>
<td>thd</td>
<td>800 800</td>
<td>clk</td>
</tr>
<tr>
<td>Enable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup time</td>
<td>tdrs</td>
<td>7 – –</td>
<td>ns</td>
</tr>
<tr>
<td>Hold time</td>
<td>tdrh</td>
<td>4 – –</td>
<td>ns</td>
</tr>
</tbody>
</table>
3.5 Creating a New Configuration

To create a new configuration, click the **New Configuration** selection located on the top of the IEGD CED main window. The Chipset Configuration Page appears.

Table 9. Timing Specification Example Values (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Standard value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V sync.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>tfpf, tfpd</td>
<td>520</td>
<td>680</td>
</tr>
<tr>
<td>Pulse width</td>
<td>tfw</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>V display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>tvd</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>Start</td>
<td>tfd</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Phase difference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H sync. ~ enable</td>
<td>tdrds</td>
<td>50</td>
<td>260</td>
</tr>
<tr>
<td>H sync. ~ clock</td>
<td>tis</td>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>H sync. ~ V sync.</td>
<td>tn</td>
<td>7</td>
<td>–</td>
</tr>
</tbody>
</table>

For information about creating DTDs for Windows CE, see Chapter 6.0, "Configuring and Building the IEGD for Microsoft Windows CE* Systems."
The Chipset Configuration Page allows you to specify settings that apply to all OS, VBIOS, EFI, and EPOG platforms (Note: The EPOG feature is available only in single display mode on Intel® System Controller Hub US15W.)

The table below describes each setting on the Chipset Configuration page.
Table 10. Chipset Configuration Page Settings (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration File Name</td>
<td>Provide a name for the configuration you are creating. This name is required and is used when you create packages. The name can consist of any alphanumeric characters and any special characters and must be between 1 and 50 characters. You must enter a configuration before you can enter any other information on this page.</td>
</tr>
<tr>
<td>Platform Chipset</td>
<td>Select the target chipset for this configuration from the drop-down list.</td>
</tr>
<tr>
<td>Display Configuration Mode</td>
<td>Select the type of display configuration from the drop-down list. You can select any one of the following display configurations:</td>
</tr>
<tr>
<td></td>
<td>• Single — Single display configuration</td>
</tr>
<tr>
<td></td>
<td>• Twin — Two displays where both displays have the same resolution, refresh rate, and content</td>
</tr>
<tr>
<td></td>
<td>• Clone — Two displays where both displays have the same content but can have different resolutions and timings.</td>
</tr>
<tr>
<td></td>
<td>• DIH — Dual Independent Head. This is a configuration where both displays can have different resolutions, different refresh rates, and different content.</td>
</tr>
<tr>
<td></td>
<td>Note: On Microsoft Windows® DIH configurations, the display DOES NOT automatically come up in extended display mode. You must go into the Display properties on the Control Panel and manually set the display to DIH mode.</td>
</tr>
<tr>
<td>Overlay Color Correction</td>
<td>Overlay Color Correction allows the Overlay plane to have color-correction settings that are different from the main frame buffer color-correction settings. See “Overlay Color Correction” on page 39.</td>
</tr>
<tr>
<td></td>
<td>Note: Overlay color correction is not supported on the Intel® GM45 chipset.</td>
</tr>
<tr>
<td>Microsoft Windows CE® Settings</td>
<td>If you are creating a package for a Microsoft Windows® CE platform, click the Microsoft Windows CE® Settings button for additional settings that may be required for your configuration. Please see “Changing Windows CE OS Options” on page 41 for descriptions of these settings.</td>
</tr>
<tr>
<td>Display Detection</td>
<td>Display Detection allows you to specify if the driver should detect displays on the system. The default is Disabled. For more information on Display Detection, refer to “Display Detection and Initialization” on page 78.</td>
</tr>
<tr>
<td>Port Devices (Available Ports, Port Order)</td>
<td>The Port Devices section lists the ports available based on the chipset selected.</td>
</tr>
<tr>
<td></td>
<td>The Available Ports box lists the ports that are available. You can move these port devices to the Port Order box to determine the search order for detecting attached displays. To move a port device to the Port Order box, either double-click the port device or click the right arrow button to move it from the Available Ports to the Port Order box.</td>
</tr>
<tr>
<td></td>
<td>The Port Order section allows you to determine the search order for detecting attached displays for the Display Detection feature. When Display Detection is enabled, the Port Order determines which display is primary and which display is secondary.</td>
</tr>
<tr>
<td></td>
<td>You can choose default ordering by not moving any of the Available Ports to the Port Order box and leaving the Port Order box empty. Default ordering is chipset-specific. See Table 56, “Default Search Order” on page 222 for more information on default port ordering based on chipset.</td>
</tr>
<tr>
<td></td>
<td>When you move one or more ports to the Port Order box, you can configure each port by clicking Next. For each port listed in the Port Order box, you can click Next to configure each port. See “Configuring Ports” on page 44 for information on configuring ports.</td>
</tr>
<tr>
<td></td>
<td>Note: When specifying the port order, if sDVOC is before sDVOB, you should specify the I2C parameter i2Cdab=0x72 for sDVOC. This allows the driver to detect the SDVO encoder connected to sDVOC properly. See other details in “i2cdab” on page 75.</td>
</tr>
</tbody>
</table>
3.5.1 Setting Color Correction

Color Correction is available for both overlays and framebuffers, and is accessed under the New Configuration link at the top of the main CED window. For both overlay and framebuffer color correction, user-assigned values must be between 0.6 to 6. By default, gamma is 1.0 (no correction).

Note: Overlay color correction is not supported on the Intel® GM45/GL40/GS45 chipset.

3.5.1.1 Overlay Color Correction

Overlay Color Correction allows the Overlay plane to have color-correction settings that are different from the main framebuffer color-correction settings. This feature allows you to color-correct for red, green, and blue, plus it enables you to adjust brightness, contrast, and saturation.

Table 11. Overlay Color Correction Values (applies to ALL color)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>0.6 to 6.0 (default value is 1)</td>
</tr>
<tr>
<td>Brightness</td>
<td>0 to 200 (default value is 100)</td>
</tr>
<tr>
<td>Contrast</td>
<td>0 to 200 (default value is 100)</td>
</tr>
<tr>
<td>Saturation</td>
<td>0 to 200 (default value is 100)</td>
</tr>
</tbody>
</table>

To assign overlay color correction, click the Overlay Color Correction button on the Chipset Configuration Page. The Overlay Color Correction Page appears, as shown in the figure below.
3.5.1.2 Framebuffer Color Correction Attributes

Framebuffer Color Correction Attributes allow you to adjust the main color attributes. This feature allows you to color-correct for red, green, and blue, and enables you to adjust brightness and contrast.

Table 12. Framebuffer Color Correction Values (applies to R, G, B color)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Correction Red</td>
<td>0.6 to 6.0 (default value is 1)</td>
</tr>
<tr>
<td>Brightness Correction</td>
<td>-127 to 127 (default value is 0)</td>
</tr>
<tr>
<td>Contrast Correction</td>
<td>-127 to 127 (default value is 0)</td>
</tr>
</tbody>
</table>

To assign framebuffer color correction, click the Framebuffer Color Correction Attributes button on the port configuration page (CRT, LVDS, sDVO, or HDMI). The Framebuffer Color Correction Page appears, as shown in Figure 9.
3.5.2 Changing Windows CE OS Options

The Windows CE Options Page allows you to enter Windows CE OS-specific options into the configuration. When you click the Microsoft Windows CE* Settings button from the IEGD Package Page (see “Creating a New Package” on page 57), the following page appears.

Add your desired values to the correction fields and then click Finish.
Figure 10. Chipset Configuration Page

The table below describes each field on this page.
<table>
<thead>
<tr>
<th>Windows CE OS Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved Memory Base</td>
<td>These two fields let you specify the amount and the starting point of statically reserved video memory. Video memory can be statically reserved or dynamically allocated on demand. If both Reserved Memory Base and Reserved Memory Size are non-zero, video memory allocation utilizes the static model. Base plus the Size must extend to TOM (Top Of Memory) and not conflict with other reserved memory arenas in the config.bib file. The default for both Reserved Memory Base and Reserved Memory Size is zero, indicating a dynamic allocation model. Default behavior disables static memory model.</td>
</tr>
<tr>
<td>Reserved Memory Size</td>
<td></td>
</tr>
<tr>
<td>Maximum Frame Buffer Size</td>
<td>The maximum size of the expected frame buffer. By providing this hint, the display driver can more efficiently organize GART memory, leading to a smaller video memory consumption. This value must be greater than or equal to the expected size of the frame buffer. Units represent the number of bytes and are specified in hexadecimal. Specifying zero causes the default frame buffer reservation sizing. The default is 0x300000.</td>
</tr>
<tr>
<td>Page Request Limit</td>
<td>The Page Request Limit controls the maximum allocations of offscreen video surfaces, buffers, etc. This value represents the number of pages (4K) allocated and is independent of dynamic or static memory configuration. The maximum is 128MB (0x8000).</td>
</tr>
<tr>
<td>Minimum Video Surface Width</td>
<td>In pixels, the minimum width and height of surfaces in order to be acceptable for allocation in video memory. Due to hardware restrictions that optimize memory access, it is advisable to reserve video memory for larger surfaces and allow GDI and DirectDraw* to allocate small surfaces from system memory. Default value for both width and height is 16.</td>
</tr>
<tr>
<td>Minimum Video Surface Height</td>
<td></td>
</tr>
<tr>
<td>Enable System to Video Stretch Blits</td>
<td>When checked, this enables system-to-video memory stretch blit operations to take advantage of hardware-accelerated filtering. Normally, it is more efficient to allow GDI to conduct system-to-video stretch blits, but the default filtering used by GDI is Nearest. The default is disabled.</td>
</tr>
<tr>
<td>Disable D3D</td>
<td>Specify whether to disable or enable D3D graphics.</td>
</tr>
<tr>
<td>Enable Dual Overlay in Vertical Extended</td>
<td>This option is available only if DIH (vertical extended) mode has been selected as the display configuration on the Chipset Configuration page. See Table 10, "Chipset Configuration Page Settings" on page 38 for details.</td>
</tr>
<tr>
<td>Enable Frame Buffer Overlay Blending</td>
<td>When checked, this option enables overlay blending with the framebuffer on both display outputs (if in VEXT mode) on US15W and when display mode resolution is 32-bit XRGB.</td>
</tr>
<tr>
<td>Enable No Tearing Option</td>
<td>If enabled, all blit operations to the framebuffer are synchronized with video sync to eliminate any visible tearing on the display screen. Disabling this feature achieves a performance gain.</td>
</tr>
<tr>
<td>Display</td>
<td>The Display section allows you select the default resolution, color depth, and refresh rate for the configuration. If you do not select a default display mode, the configuration uses the default display mode for the operating system it is installed on.</td>
</tr>
<tr>
<td>Use Default Width</td>
<td></td>
</tr>
<tr>
<td>Use Default Height</td>
<td></td>
</tr>
<tr>
<td>Use Default Color Quality</td>
<td></td>
</tr>
<tr>
<td>Use Default Refresh</td>
<td></td>
</tr>
</tbody>
</table>
3.5.3 Configuring Ports

You can configure each port listed in the Port Order box of the Chipset Configuration Page by clicking Next. When you do, a port Configuration Page appears similar to the one shown here.

Figure 11. Port Configuration Page
The Port Configuration Page allows you to specify whether to use EDID timings or customized DTD timings for the display connected to this specific port. From this page, you can also specify Attribute Settings, I2C Settings, and Flat Panel Settings and create a new DTD that can be used with any configuration.

Table 14 describes each field on this page.

Table 14. Port Configuration Settings (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Port Configuration Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readable Port Name</td>
<td>Enter a name for the port. This is a required field and the name must be between 1 and 50 characters and may contain spaces.</td>
</tr>
<tr>
<td>Port Rotation</td>
<td>This list allows you select a rotation for the display connected to this port. You can choose between 0, 90, 180, and 270 degrees. The default is 0. Note: For Windows CE Static rotation, setting the width and height to the rotated values is no longer required with the improvements beginning in v10.1.</td>
</tr>
<tr>
<td>Flip Port</td>
<td>Check this box if you want the display connected to this port to be inverted horizontally. The default is not to invert horizontally.</td>
</tr>
<tr>
<td>CenterOff</td>
<td>When this option is enabled it DISABLES centering. Also, depending on the combination of "edid" + "user-dtd" + connected hardware, IEGD will add missing compatibility modes (6x4, 8x6, 10x7 & 12x10) via centering. Use this option to disable this feature.</td>
</tr>
</tbody>
</table>
| **EDID Options** | This section allows you to set EDID options for the display. The IEGD supports three different types of EDID display modes:
 • Built-in display modes: These modes are hard-coded in the IEGD. These modes can be filtered based on the EDID block.
 • EDID Block: These are Detailed Timing Descriptors read from an EDID display. An EDID display can contain DTD as well as other information about the display.
 • User-specified DTDs.
If you want to use the display’s EDID information if it is available, click the **Use EDID Display if Available** check box.
If the display attached to this port contains EDID information, you can choose one or more of the following options from the If EDID Device section to determine which set of timings to use for the display connected to the port:
 • Use driver built in standard timings — If this box is checked, the standard timings built into the IEGD are used.
 • Use EDID block — If this box is checked, the EDID block is used.
 • Use user-defined DTDs — If this box is checked, a user-defined DTD is used. You can select which DTD to use by checking the appropriate box in the Custom Display Timings Descriptors (DTDs) section. If no DTDs are defined, you can click **New DTD** and create a custom DTD. For information on creating custom DTD, refer to Table 21 on page 63.
If you select both **Use driver built-in standard timings** and **Use EDID block**, the IEGD uses its built-in display timings and the timings provided by the display.
If the display attached to this port does not contain EDID information, you can choose one or both of the following options from the If Not EDID Device section:
 • Use driver built-in standard timings — If this box is checked, the standard timings are used.
 • Use user-defined DTDs — If this box is checked, a user defined DTD is used. You can select which DTD to use by checking the appropriate box in the Custom Display Timings Descriptors (DTDs) section. If no DTDs are defined, you can click **New DTD** and create a custom DTD. For information on creating custom DTD, refer to Table 21 on page 63.
See “Sample Advanced EDID Configurations” on page 81 for example configurations. |

See “Sample Advanced EDID Configurations” on page 81 for example configurations.
3.5.3.1 Changing Port Attribute Settings

When you click the Attributes Settings button from the Encoder Configuration section of the Port Configuration Page, the CED displays a page of attributes for the selected encoder device. The actual page that appears depends upon the encoder device selected and only the attributes that apply to the selected encoder appear. For a full description of all attributes for all supported encoders, refer to "Port Driver Attributes" on page 213.

Figure 12 shows a sample Attributes Settings Page for the Chrontel CH7022, CH7307, and CH7308 encoders.
When the Attributes Settings Page first appears, it shows the **Use Default** box checked for all attributes.

To change a default value, clear the **Use Default** check box and enter a new value. For a description of all attributes for all supported encoders, see “Port Driver Attributes” on page 213.

Changing I2C Settings

The I2C Settings Page allows you to specify the I/O interface connections to devices on an sDVO port. When you click **I2C Settings** from the Port Configuration Page, the following screen appears.
To change the default settings for the **I2C Bus Configuration** or the **DDC Bus Configuration**, clear the **Use Default** box and enter new values. The following table describes each field on this page.

Table 15. I2C Settings

<table>
<thead>
<tr>
<th>I2C/DDC Bus Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Address Byte</td>
<td>You can enter a device address byte for the device that this port is connected to in these boxes. The I2C device address is for reading and writing device registers. The device address byte must be in 8-bit format with the 7-bit slave address assigned to its bits 7:1 and bit 0 set to 0. The DDC Device Address Byte is the I2C device address for reading EDID data from the display through the DDC bus.</td>
</tr>
<tr>
<td>Speed (KHz)</td>
<td>Speed of I2C bus for the device and for the EDID device. The range for these two fields is 10-400 KHz.</td>
</tr>
</tbody>
</table>

3.5.3.3 Changing Flat Panel Settings

The Panel Settings Page allows you to specify settings for a flat panel display connected to this sDVO port. When you click **Flat Panel Settings** from the Port Configuration Page, the following screen appears.
Figure 14. Panel Settings Page

Panel Settings Page
This page allows you to configure settings for a flat panel display.

- **Fixed Timing**
 - Centering and Upscaling
 - Use Default
 - Upscaling
 - Force Centering

- **DVI Panel Backlight Options**
 - Backlight Control Method:
 - No Backlight

- **Timing Delays**
 - T1: DVI active and DVO clock/data active
 - T2: DVO clock/data active and Backlight enable
 - T3: Backlight disable and DVO clock/data inactive
 - T4: DVO clock/data inactive and XDD inactive
 - T5: Minimum from XDD inactive and active

Finish Cancel
The table below describes each section of this page.

Table 16. Panel Settings Options

<table>
<thead>
<tr>
<th>Flat Panel Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Timing</td>
<td>This section indicates whether the attached display is a fixed timing display.</td>
</tr>
<tr>
<td>Centering and Upscaling</td>
<td>The Use Default check box lets you choose the default setting or either Upscaling or Force Centering.</td>
</tr>
<tr>
<td>GPIO Pin Connections</td>
<td>If you select Port Driver, GMCH, or ICH from the Flat Panel Backlight Options list, you can specify the following GPIO pin connections.</td>
</tr>
<tr>
<td></td>
<td>• Panel Power Signal — GPIO connection for panel power.</td>
</tr>
<tr>
<td></td>
<td>• VDD backlight sequence signal — GPIO connection for backlight power on/off sequencing signal.</td>
</tr>
<tr>
<td></td>
<td>• Backlight signal — GPIO connection to enable backlight signal.</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>This list lets you select a color depth for the panel. You can choose either 18 or 24 bit color depth. The default is 18.</td>
</tr>
<tr>
<td>Single/Dual Channel</td>
<td>This option determines the chip channel mode. Single mode is recommended for TV displays. For flat panels, refer to the panel's specification.</td>
</tr>
<tr>
<td>Flat Panel Backlight Options</td>
<td>This section provides options for controlling the backlight of the flat panel display and specifying timing delays.</td>
</tr>
<tr>
<td></td>
<td>• The Backlight Control Methods list lets you choose among No Backlight, Port Driver, GMCH, or ICH to control the backlight. If choose Port Driver, GMCH, or ICH, you can specify the timing delays in the Timing Delays section and the GPIO pin connections in the GPIO Pin Connections section. The default is No Backlight.</td>
</tr>
<tr>
<td>Timing Delays</td>
<td>This section lets you specify timing delays for the backlight signals as follows:</td>
</tr>
<tr>
<td></td>
<td>• T1-VDD active and sDVO clock/data active: 1-512, increment by 1.</td>
</tr>
<tr>
<td></td>
<td>• T2-DVO active and backlight enable: 2-256, increment by 2.</td>
</tr>
<tr>
<td></td>
<td>• T3-Backlight disable and DVO clock/data inactive: 2-256, increment by 2.</td>
</tr>
<tr>
<td></td>
<td>• T4-DVO clock/data active and inactive: 1-512, increment by 1.</td>
</tr>
<tr>
<td></td>
<td>• T5-Minimum from VDD inactive and active: 1-1600, increment by 50.</td>
</tr>
<tr>
<td>Note: Timers are very specific to the panel you are using. If they are set incorrectly the display can be damaged or ruined. Please refer to the datasheet for your display to determine the correct settings.</td>
<td></td>
</tr>
</tbody>
</table>
3.5.4 Configuring Fastboot

Figure 15. Fastboot Configuration Page

![Fastboot Configuration Page](image_url)
The table below describes each section of this page.

Note: Enter the file path for the splash video on the Package Page. See Figure 18 on page 58.

Table 17. Fastboot Options (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Fastboot Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable Seamless Mode Set</td>
<td>The Seamless mode set feature ensures that on a properly configured embedded device there is only 1 mode set between power on and a fully functional system. Under normal circumstances a PC will set the mode several times during initialization which causes screen flicker and latency that is undesirable for an embedded device. With seamless mode set, the firmware sets the mode and the driver adopts the existing mode without altering the hardware state. This feature can be combined with splash screen or splash video for optimal effect. EFI and the EPOG feature do not support this feature.</td>
</tr>
<tr>
<td>Splash Screen</td>
<td>The Splash screen feature provides a user-configurable splash screen image that is loaded to the framebuffer at the earliest possible time by the EPOG feature and EFI graphics driver and remains in place until overwritten by the OS or driver. Additionally the IEGD graphics driver can be configured to suppress OS drawing to the on-screen framebuffer until notified by an application. Instead, drawing is redirected to an off-screen framebuffer. When notified by the application, the IEGD driver will flip the already prepared off-screen framebuffer to on-screen and cease redirection of drawing. In this manner the configured splash screen will be displayed early during boot and remain in place until a time when the OS is fully loaded and the application interface has been prepared. Only .bmp format is supported for the splash screen.</td>
</tr>
<tr>
<td>Quickboot</td>
<td>The quickboot feature optimizes the speed that IEGD loads at the expense of compatibility and ease of use. Quickboot disables non-critical features that affect the initialization time of the driver that are not needed for targeted embedded applications. For example, there is no port detection; it supports only an LVDS interface.</td>
</tr>
<tr>
<td>Splash Video</td>
<td>The Splash Video feature provides a mechanism to use a portion of the off-screen pre-allocated video memory ("Stolen Memory") as a video image that is displayed on an overlay to the framebuffer. The intention is that a video capture device external to IEGD will be configured to transfer a video stream to the configured location in video memory using DMA. The splash video remains in place until the IEGD driver is notified by an external application to disable the overlay.</td>
</tr>
<tr>
<td>Splash Screen BG Color Red (EFI only)</td>
<td>Splash Screen BG Color Red must be between 0x0 and 0xFF.</td>
</tr>
<tr>
<td>Splash Screen BG Color Green (EFI only)</td>
<td>Splash Screen BG Color Green must be between 0x0 and 0xFF.</td>
</tr>
<tr>
<td>Splash Screen BG Color Blue (EFI only)</td>
<td>Splash Screen BG Color Blue must be between 0x0 and 0xFF.</td>
</tr>
<tr>
<td>Splash Screen X (upper left corner x coordinate) (EFI and EPOG feature only)</td>
<td>The X location, in pixels, where the Firmware Splash Screen will be placed. This number is a signed number in 2's complement. Positive numbers are offset from the left of the screen. Negative numbers are offset from the right of the screen.</td>
</tr>
<tr>
<td>Splash Screen Y (upper left corner y coordinate) (EFI and EPOG feature only)</td>
<td>The Y location, in pixels, where the Firmware Splash Screen will be placed. This number is a signed number in 2's complement. Positive numbers are offset from the top of the screen. Negative numbers are offset from the bottom of the screen.</td>
</tr>
<tr>
<td>Splash Video Offset (EFI and EPOG feature only)</td>
<td>The offset, in bytes, from the base of video memory where the Splash Video will be placed. Care must be taken to ensure that this location is past the end of the on-screen framebuffer and that the full Splash Video image within the pre-allocated video memory.</td>
</tr>
<tr>
<td>Splash Video Pixel Format (EFI and EPOG feature only)</td>
<td>The pixel format of the Splash Video image in memory. The available pixel formats are encoded values used within the IEGD driver.</td>
</tr>
<tr>
<td>Splash Video Source Width (EFI and EPOG feature only)</td>
<td>The width, in pixels, of the Splash Video image in memory.</td>
</tr>
</tbody>
</table>
3.5.4.1 Configuring Splash Video

The splash video feature can be used to display a video while the system is booting to the operating system. This section describes how to configure the options needed.

Figure 16. Splash Video with 8 MBytes of Stolen Memory Example

```
Stolen Memory

+----------------+ +-----------------+ +----------------+ +----------------+ +----------------+ +----------------+
| System Memory  | | Frame Buffer    | | Splash Video   | | Scratch Page   | | GTT             |
+----------------+ +-----------------+ +----------------+ +----------------+ +----------------+ +----------------+

Max size of Video = Start_Addr_Scratch_Pg – Start_Addr_of_Video

BGSM + Video_Offset (Start Physical Address of Video Data)

1GB - 8MB = BGSM (Base of Graphics Stolen Memory)

1GB - 132KB (Start Physical Address of Scratch Page)

1GB - 128KB (Start Physical Address of GTT)

1GB = 1024*1024*1024

1GB = 1024*1024*1024

Top of RAM (TR)

TR-size of (GTT) 4KB for scratch page
```

Table 17. Fastboot Options (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Fastboot Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splash Video Source Height (EFI and EPOG feature only)</td>
<td>The height, in pixels, of the Splash Video image in memory.</td>
</tr>
<tr>
<td>Splash Video Source Pitch (EFI and EPOG feature only)</td>
<td>The pitch, in bytes, of the Splash Video image in memory. Pitch must be >= bytes per pixel * source width.</td>
</tr>
<tr>
<td>Splash Video Destination X (EFI only)</td>
<td>The X location, in pixels, where the Splash Video will be placed. This number is a signed number in 2’s complement. Positive numbers are offset from the left of the screen. Negative numbers are offset from the right of the screen.</td>
</tr>
<tr>
<td>Splash Video Destination Y (EFI only)</td>
<td>The Y location, in pixels, where the Splash Video will be placed. This number is a signed number in 2’s complement. Positive numbers are offset from the top of the screen. Negative numbers are offset from the bottom of the screen.</td>
</tr>
<tr>
<td>Splash Video Destination Height (EFI only)</td>
<td>The height, in pixels, of the Splash Video window on the screen. This number must currently be the same as SrcHeight.</td>
</tr>
<tr>
<td>Splash Video Destination Width (EFI only)</td>
<td>The width of the screen. This number must currently be the same as SrcWidth.</td>
</tr>
</tbody>
</table>
The Video DMA area is where the video will be streamed. It is part of the stolen memory of our graphics device.

The external PCI device that is connected to the camera needs to know the exact DDR RAM physical address to stream. Or dump the video data at that memory location.

To calculate the Start DDR RAM physical address:

\[\text{Start Phy Ram Addr} = \text{BGSM} + \text{Video Offset} \]

where

- **BGSM** = Base of Graphics Stolen Memory
- **Video Offset** = Offset where the video data is present. This is what you enter into the CED tool.

There are two ways to calculate BGSM:

- The recommended method is to use the `setpci` command in Linux to find the BGSM from the PCI Config space.

 At the Linux command prompt, type the following:

 \`
 $ setpci -s 0:2.0 0x5C.L
 \`

 OR

- Find the amount of physical RAM populated in the system, for example, 1 Gbyte, and the stolen memory selected by the user in the system BIOS, for example, 8 Mbyte.

\[\text{BGSM} = 1 \text{ Gbyte} - 8 \text{ Mbytes} = 0x4000 \text{ 0000} - 0x80 \text{ 0000} = 0x3F80 \text{ 0000} \]

3.5.4.2 How to Select the Video_Offset

Determine the size of the maximum resolution of the framebuffer.

\[\text{Size} = \text{framebuffer_height} \times \text{framebuffer_pitch} \]

where \(\text{framebuffer_pitch} = \text{framebuffer_width} \times \text{Bytes per Pixel} \) (page aligned)

For example, 1024x768 at 32-bit BPP:

\[\text{Size} = 768 \times (1024 \times 4) = 3145728 = 0x30 \text{ 0000} \]

For some usage models, the framebuffer pitch is set to 8192 bytes. In that case:

\[\text{Size} = 768 \times (8192) = 6291456 = 0x60 \text{ 0000} \]

The Video_Offset can start from **0x30 0000** or **0x60 0000** (if the pitch is 8192). See the notes below on the recommended values for the Video Offset.

Max Size of Splash Video = Size of Stolen Memory - Max Frame buffer size – Size of GTT – Size of Scratch Page (4 KB)

Notes:

1. For the Splash Video option the stolen memory MUST be a minimum of **8 Mbytes**. This is selected in the BIOS menu.
2. The recommended Video Offsets for the splash video are **0x600000** and **0x700000**.
3. If the Size of the Video frame is more than **1 Mbyte**, please choose **0x600000**.
3.5.5 Configuring the Video BIOS and EFI

The final page of the IEGD Configuration allows you to configure your video BIOS (if you are creating a configuration that includes the Video BIOS) and EFI. You can configure the Video BIOS by clicking **Next** after you configure each port. When you do, the following Video BIOS and EFI Configuration Page appears.

Figure 17. Video BIOS Configuration Page
From this page, you can customize POST (Power On Self Test) messages and default display modes as well as matching port devices to System BIOS ports.

The table below describes each field on this page.

Table 18. Video BIOS Settings Options (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Video BIOS Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Display Mode</td>
<td>This section allows you to specify a standard or a customized display mode for the primary display. You can select a standard mode from any of the standard modes listed in the drop-down list. If you want to use a customized mode for the primary display, check the Custom check box and enter the mode number in the box. For a complete list of customized VGA and VESA modes, refer to Table 27, "Supported VGA Video Display Modes" on page 100 and Table 28, "VESA Modes Supported by Video BIOS" on page 101.</td>
</tr>
<tr>
<td>Secondary Display Mode</td>
<td>This section allows you to specify a standard or a customized display mode for the secondary display. You can select a standard mode from any of the standard modes listed in the drop-down list. If you want to use a customized mode for the secondary display, check the Custom check box and enter the mode number in the box. For a complete list of customized VGA and VESA modes, refer to Table 27, "Supported VGA Video Display Modes" on page 100 and Table 28, "VESA Modes Supported by Video BIOS" on page 101.</td>
</tr>
<tr>
<td>SF Functions</td>
<td>These settings allow you to enable or disable the five System BIOS 15h interrupt hooks. (Please see "Intel® 5F Extended Interface Functions" on page 225 for more information on 5F functions.) All five functions are enabled by default.</td>
</tr>
</tbody>
</table>
| **Common to Port** | The Common to Port section lets you match port devices with common System BIOS ports. This allows the Video BIOS to retrieve information about the port from the System BIOS. It allows you to associate standard display names used in most system BIOSs to specific ports that are recognized by IEGD (for example, LVDS, sDVO). The VBIOS makes this association when the VBIOS calls the System BIOS Intel® 5F interrupt functions. This setting consists of six numbers, where each number is associated with one of the System BIOS displays:

1 : CRT - Standard analog CRT
2 : TV1 - TV Output 1
3 : EFP1 - DVI Flat Panel 1
4 : LFP - Local Flat Panel (Internal LVDS display)
5 : TV2 - TV Output 2
6 : EFP2 - DVI Flat Panel 2

The values above are an example of the typical displays and corresponding order used by a system BIOS. However, this may vary depending on how your system BIOS has implemented the displays and the Intel 5F interrupt functions.

The value in each position in the setting should be the associated port device. Using the typical settings above, if you want to associate CRT in the system BIOS with the internal CRT (port 1) and LFP in the system BIOS with internal LVDS (port 4) in the VBIOS, select CRT from the VBIOS Port Devices list and click the left arrow button next to the CRT row in the Matches column, and then select LFP from the VBIOS Port Devices list and click the left arrow button next to the LFP row in the Matches column.

Notes: This feature must be compatible with the System BIOS. If the System BIOS does not properly implement the Intel 5F functions, then using the Common to Port feature could cause unpredictable results with the displays. If you are unsure, leave the Matches column blank for all ports to disable this feature.

The Display Detect field on the Chipset Configuration page must be set to Enable in order for the Common to Port values to be used. |
3.6 Creating a New Package

A package consists of one or more configurations and is used to create an installation that works for multiple operating systems and chipset platforms and displays.

To create a new package, click the **New Package** link at the top of the main CED window. The IEGD Package Page appears.

<table>
<thead>
<tr>
<th>Video BIOS Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable POST messages to display</td>
<td>To enable Power On Self Test (POST) messages to display during the power on sequence, check this box. If left unchecked (i.e., cleared), the POST messages do not display.</td>
</tr>
<tr>
<td>OEM String</td>
<td>Enter a string of up to 100 characters. This string appears on the display when the Video BIOS starts up. The default is a blank string.</td>
</tr>
<tr>
<td>OEM Vendor Name</td>
<td>Enter a string of up to 80 characters that identifies the OEM Vendor. This string appears on the display when the Video BIOS starts up. The default is a blank string.</td>
</tr>
<tr>
<td>OEM Product Name</td>
<td>Enter a string of up to 80 characters that identifies the OEM Product Revision. This string appears on the display when the Video BIOS starts up. The default is a blank string.</td>
</tr>
<tr>
<td>OEM Product Revision</td>
<td>Enter a string of up to 80 characters that identifies the OEM Product Revision. This string appears on the display when the Video BIOS starts up. The default is a blank string.</td>
</tr>
<tr>
<td>Number of Seconds to Display</td>
<td>Enter the number of seconds to display the above information. The default is 1.</td>
</tr>
</tbody>
</table>
The table below describes each field on this page.

Figure 18. IEGD Package Editor Page

IEGD Package Page

Splash Screen file must be selected.

- **Package File Name:** pkg

- **Configurations**
 - Configuration Name: 10x75am.cnfg
 - Chipset: US15
 - Config ID: 1

- **Target OS**
 - Linux operating system
 - Microsoft Windows CE 5.0
 - Microsoft Windows CE 6.0
 - Microsoft Windows XP*/xPe*
 - Video BIOS
 - EFI

- **Microsoft Windows* Settings**

- **Linux* Settings**

- **EFI Splash Screen**
 - Add Splash Screen:

 - Browse...
Table 19. IEGD Package Editor Setting Options

<table>
<thead>
<tr>
<th>Package Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package File Name</td>
<td>Enter a name for the package. This is a required field and the name must be between 1 and 50 characters and may contain spaces.</td>
</tr>
<tr>
<td>Configurations</td>
<td>This block shows the configurations that are available to be packaged. Each package consists of one or more configurations, each of which is associated with a specific chipset. To select a configuration, click the check box next to the configuration name. You can select all available configurations by clicking the Select All button located below the Configurations block and clear all configurations by clicking the Clear All button. The Configuration Name column shows the name of each configuration and the Chipset column shows the chipset associated with each configuration. In the Config ID column, you must enter a configuration ID for each configuration. The configuration ID must be a number between 1 and 15. By default, the Package Editor automatically assigns the next available configuration ID when you select a configuration. You can change the default configuration ID by clicking in the edit box and entering a different value.</td>
</tr>
<tr>
<td>Default Configuration</td>
<td>The Default Configuration list box allows you to select a default configuration from the configurations you selected in the Configurations block. For single configurations the default is the one selected in the previous option. For multiple configurations, the default is the first one selected in the Configurations list. To have no default configuration, select None. See also Section 5.2, "Configuration Information" on page 103.</td>
</tr>
<tr>
<td>Target OS</td>
<td>This block allows you to select one or more operating systems and Video BIOS for the package. For each target you select, the CED produces a configuration file for the selected OS or Video BIOS platform. Please see the following section for settings on the Target OS: • "Entering Linux OS Options" on page 60 • "Entering Windows OS Options" on page 62 • "Generating a VBIOS Package" on page 63 • "Entering EFI Options" on page 63 • "Entering EPOG Feature Options" on page 65</td>
</tr>
<tr>
<td>Microsoft Windows Settings</td>
<td>If you are creating a package for a Microsoft Windows* platform, click the Microsoft Windows Settings button for additional settings that may be required for your configuration. Please see "Entering Windows OS Options" on page 62 for descriptions of these settings.</td>
</tr>
<tr>
<td>Linux Settings</td>
<td>If you are creating a package for a Linux OS platform, click the Linux Settings button for additional settings that may be required for your configuration. Please see "Entering Linux OS Options" on page 60 for descriptions of these settings.</td>
</tr>
<tr>
<td>EFI and EPOG Splash Screen</td>
<td>The Add Splash Screen check box enables the use of a splash screen, which you define using the Browse... button to locate the file. Only .bmp format is supported for the splash screen.</td>
</tr>
</tbody>
</table>

If you are not creating a VBIOS package, click **Finish**. When you click **Finish**, the CED creates a package that can be used for generating an installation.
3.6.1 Entering Linux OS Options

The Linux Options Page allows you to enter Linux OS-specific options into the configuration. When you click Linux Settings from the IEGD Package Page, the following page appears.

Figure 19. Linux Options Page

The table below describes each of these settings.
Platform Configuration Using CED

Table 20. Linux OS Settings Options

<table>
<thead>
<tr>
<th>Linux OS Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Display Modes</td>
<td>The Default Display Modes section allows you to select the default resolution, color depth, and refresh rate for the configuration. If you do not select a default display mode, the package uses the default display mode for the operating system it is installed on.</td>
</tr>
<tr>
<td>Disable Hardware Acceleration</td>
<td>Disable or enable hardware 2D acceleration. The default is to enable hardware acceleration, so to disable acceleration, click the check box.</td>
</tr>
<tr>
<td>Enable Hardware Cursor</td>
<td>Enable the use of the hardware cursor. By default, the hardware cursor is disabled.</td>
</tr>
<tr>
<td>Enable Use Double Buffer</td>
<td>Enable double buffering on the framebuffer. By default, double buffering is disabled. To enable it, click the check box.</td>
</tr>
<tr>
<td>Disable No Tearing Option</td>
<td>Disable No Tearing. By default, the No Tearing is enabled. Disabling this option results in a performance penalty as the driver is forced to synchronize page flips to the vertical blanking signal.</td>
</tr>
<tr>
<td>No Xinerama</td>
<td>Xinerama support. Xinerama is an extension to the X Window System which allows applications and window managers to use the two (or more) physical displays as one large virtual display. By default, Xinerama is enabled. To disable it, click the check box.</td>
</tr>
<tr>
<td>Disable OpenGL* Installation</td>
<td>OpenGL* (Disable the Direct Rendering Infrastructure (DRI) Option). DRI allows the client to directly write to DMA buffers that are used by the graphics hardware. To disable OpenGL, check the box. The option "DRI" "0" will be set for every available display. This will turn off direct rendering and disable hardware accelerated OpenGL. By default, OpenGL is enabled. No "DRI" line(s) are placed in the configuration file. The driver will intelligently determine if DRI can be supported and will enable it if possible.</td>
</tr>
<tr>
<td>Disable XVideo Support</td>
<td>Disable XVideo support. In a dual independent head configuration, either the first display or the second display supports XVideo. Both displays can not support XVideo simultaneously. The default is XVideo support is enabled.</td>
</tr>
<tr>
<td>Disable XVideo Blend</td>
<td>Disable XVideo support using the 3D blend manager. This provides XVideo support in configurations that cannot be supported with overlay. For example, this is supported on both displays in a dual independent head setup. It is also supported when the display is rotated or flipped. Color key is only supported if ShadowFB is enabled and the VideoKey is defined. The default is XVideoBlend support is enabled.</td>
</tr>
<tr>
<td>Enable Frame Buffer Overlay Blending</td>
<td>When checked, this enables overlay blending with the framebuffer on both display outputs (if in VEXT mode on Windows CE) on US15W and when display mode resolution is 32-bit XRGB.</td>
</tr>
<tr>
<td>XVideo Color Key</td>
<td>This sets the color key for XVideo and XVideoBlend. This value is either a 24-bit value or a 16-bit value, depending on the pixel depth of the screen. The color key is always enabled for XVideo, even when it is not defined. The color key is always disabled for XVideoBlend unless both this option is defined and the ShadowFB option is enabled. The default color key for XVideo is 0x0000ff00. For XVideo Blend, the color key is disabled by default.</td>
</tr>
</tbody>
</table>
3.6.2 Entering Windows OS Options

The Windows Options Page allows you to enter Windows OS-specific options into the configuration. When you click Microsoft Windows Settings from the IEGD Package Page, the following page appears.

Figure 20. Windows Options Page

The table below describes each field on this page.
Platform Configuration Using CED

Table 21. Windows OS Setting Options

<table>
<thead>
<tr>
<th>Windows OS Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>The Display section allows you to use the default settings by checking the Use Default check box or to select the default width, height, color quality, and refresh rate for the configuration.</td>
</tr>
<tr>
<td>Disable 3D Support</td>
<td>Specifies whether to enable D3D. The default is to enable 3D support (not checked).</td>
</tr>
<tr>
<td>Disable Off-screen Bitmap support (No DFB)</td>
<td>This option turns OFF the driver capabilities to create and use offscreen bitmaps that are used to improve GDI and DirectDraw** performance in the driver. When this option is ON, you may see some GDI and DirectDraw performance degradation. The drv functions below will be affected when this option is turned on.</td>
</tr>
<tr>
<td></td>
<td>• DrvCreateDeviceBitmap
 • DrvDeleteDeviceBitmap
 • DrvDeriveSurface</td>
</tr>
<tr>
<td>Disable DXVA H/W Video Decode Acceleration</td>
<td>This option is enabled by default in IEGD, however, by selecting this option, you can disable DXVA hardware video decode acceleration.</td>
</tr>
<tr>
<td>Enable Frame Buffer Overlay Blending</td>
<td>When checked, this option enables overlay blending with the framebuffer on both display outputs (if in VEXT mode) on US15W and when display mode resolution is 32-bit XRGB.</td>
</tr>
<tr>
<td>Enable Frame Buffer Overlay Blending 2D Alpha Override</td>
<td>This option applies only to Windows XP and US15W. When checked, it enables an override to the frame buffer overlay blending 2D alpha.</td>
</tr>
<tr>
<td></td>
<td>Notes: Checking the Frame Buffer Overlay Blending option and running a 3D alpha blending application on overlay [non full screen mode] causes the black icons on the desktop to appear. This is expected behavior as the operating system sets the 2D alpha values. To overcome this behavior, choose Enable Frame Buffer Overlay Blending 2D Alpha Override option and then enter the alpha value. This alpha override will cause performance impact when a lot of 2D blitting operations take place.</td>
</tr>
<tr>
<td></td>
<td>This option applies only to Windows XP and US15W. When checked, it enables an override to the frame buffer overlay blending 2D alpha.</td>
</tr>
<tr>
<td>Frame Buffer Overlay Blending Alpha Value</td>
<td>The valid range is from 0x00 to 0xFF.</td>
</tr>
</tbody>
</table>

3.6.3 Generating a VBIOS Package

If you are creating a package for a VBIOS installation, click **Next**. The CED displays the VBIOS Generation page.

To generate a VBIOS, click the **Generate VBIOS** check box and select the configurations to include. After selecting the chipset and the configurations, click **Finish**. The CED generates a package that includes both the OROM and the TSR for the chipsets and the configurations you selected.

3.6.4 Entering EFI Options

If you are creating a package for a EFI installation, click **Next**. The CED displays the EFI Generation page.
Figure 21. EFI Generation Page

To generate an EFI configuration:

1. In the Fastboot and/or General modes sections, click the **Generate EFI** checkbox.
2. Select the chipset and configuration(s) to include.
3. Click **Finish**.

 The CED generates a package that includes the EFI driver for the modes, chipsets and the configurations you selected.
3.6.5 Using the Generated EFI Configuration

Use IEGD CED to configure and build an EFI video driver for your platform, as described in Section 3.6.4 and then follow the instructions below to install the driver.

1. After building the EFI driver, copy the appropriate module to your working directory where you keep your Aptio MMTOOL and EFI BIOS that needs to be updated. The file is typically called IEGD.DXE and is found in the IEGD ZIP file in the installations folder under EFI.

2. Make a working copy of your EFI BIOS image.
 For example, copy CBCHAxxx.ROM to CBCHAxxx_IEGD_EFI.ROM where xxx = the release version of Standard BIOS

 OR

 Copy CBFBAxxx.ROM to CBFBAxxx_IEGD_EFI.ROM where xxx = the release version of Fast Boot BIOS)

3. Start the MMTOOL in GUI mode.

4. Load the EFI BIOS image using the Load Image button.
 After it loads you will be presented with a list of existing modules.

5. Select CBCHAxxx_IEGD_EFI.ROM or CBFBAxxx_IEGD_EFI.ROM (from step 2.)

6. If it exists, delete any legacy VBIOS by highlighting the old video solution, select the DELETE tab at the top, and then press the DELETE button.

Note: The EFI Fast Boot images typically do NOT contain a video module.

For example, for CBCHAxxx.ROM you will see a CSMVIDEO module. This is the Compatibility Software Module for a legacy VBIOS.

7. If it exists, delete any old versions of the IEGD EFI Fast Boot Video Driver. Look for an unnamed module with a GUID that starts with “2B13E5F0-” or with a module name that includes “IEGD”. If it exists, select the DELETE tab, highlight the module and then click the DELETE button.

8. Insert the new video module by clicking on the INSERT tab, specifying the module file name, and then clicking the INSERT button. You may browse to locate the file, for example, iegd.dxe.)

9. Save image by clicking the Save Image button and then close the dialog box.

10. Flash the image into your flash chip and install it on the board. You can either use the hardware flash programmer or the Aptio AFUDOS tool for this purpose.

3.6.6 Entering EPOG Feature Options

If you are creating a package for an EPOG feature installation, follow the steps below.

1. From the Target OS section, select EPOG.

2. If you want to use a splash screen, select the Add Splash Screen check box and then browse to the .bmp file you want to use.

3. Click Finish.
 The CED generates a package that includes the embedded pre-OS graphics feature for the modes, chipsets, and configurations you selected.
3.6.7 Using the Generated Embedded Pre-OS Graphics Feature Configuration

Use IEGD CED to configure and build a driver with the embedded pre-OS graphics feature, as described in “Entering EPOG Feature Options” and then follow the instructions below to install the driver.

1. After generating the driver with the embedded pre-OS graphics feature, untar the tar file generated by the CED.
2. Copy the file libepog.a and paste it in the lib/elf directory in BLDK.
3. Follow the BLDK build procedure with graphics enabled. (BLDK can be obtained at the Intel Validation Internet portal https://platformsw.intel.com/index.aspx)

3.7 Generating an Installation

After you have created a package, you can generate an installation for the package by following this procedure.

1. Select a package from the Package folder located on the left pane of the CED main window.
2. Click Generate Installation. While the installation is building, the CED displays a progress bar. When the installation is complete, the CED places the output in the Installation folder on the left pane of the CED window.

For each OS and VBIOS platform specified in the package, the CED generates a folder in the ...\workspace\installation folder under the current folder. For example, if you select a package that contains configurations for all supported operating systems and the VBIOS, the CED generates the following folders:

- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_Linux
- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_WINDOWS
- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_WINCE50
- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_WINCE60
- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_VBIOS
- ...\workspace\installation\<package name_installation>\IEGD_10_3_1_EFI

These folders contain all the subfolders required for the installation onto the target systems. To complete the installations on the target systems, refer to the following sections:

- “Installing and Configuring Linux* OS Drivers” on page 149
- “Configuring and Installing Microsoft Windows Drivers” on page 103
- “Configuring and Building the IEGD for Microsoft Windows CE* Systems” on page 119
- “Entering Linux OS Options” on page 60

3.8 Configuring the System BIOS for Use with the IEGD

Some aspects of configuring the Intel® Embedded Graphics Drivers are common across the Video BIOS (VBIOS), EFI, and the drivers for the supported operating systems. The following sections provide an overview for configuring both the VBIOS and the Intel
Embedded Graphics Drivers and describe in detail the common components and tools. This section also describes how to configure the system BIOS for the supported systems.

3.9 System BIOS Settings

Before installing the Intel Embedded Graphics Drivers, you must first configure the system BIOS. The following sections describe the required settings. These descriptions are based on AMIBIOS8* from American Megatrends, Inc., which is the recommended system BIOS to use with the Intel Embedded Graphics Drivers. Settings may vary if a different system BIOS is used.

3.9.1 GMCH PCI Device Enabling

The PCI Device Enabling feature on the Graphics and Memory Controller Hub (GMCH) should be set as specified in the table below.

Table 22. GMCH Device 2, Function 1 BIOS Setting

<table>
<thead>
<tr>
<th>OS</th>
<th>Chipset</th>
</tr>
</thead>
</table>

Microsoft Windows XP* and Microsoft Windows XPe* Disabled

Microsoft Windows CE* Disabled

Linux Disabled

3.9.2 Graphics Mode Select (GMS)

The System BIOS typically allows a portion of physical memory to be dedicated to firmware and graphics driver use. This dedicated memory is known as stolen memory since it is not available to the operating system. The size of this memory is selectable and chipset-specific. Stolen memory is typically used by the firmware and graphics driver to locate the framebuffer, but can also be used as scratch and surface memory. Because it is programmatically set aside during boot by the System BIOS, access to it is direct and does not require OS memory allocation services. Firmware is fully responsible for stolen memory management.

Graphics Mode Select (GMS), or stolen memory, can be set to any of the sizes listed in the table below. Smaller sizes limit the framebuffer size during firmware boot. Larger sizes marginally increase surface allocation performance for the graphics driver.

Table 23. GMS Settings

<table>
<thead>
<tr>
<th>Chipset</th>
<th>GMS Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel®PNV</td>
<td>0, 1 Mbyte, 4 Mbytes, 8 Mbytes, 16 Mbytes, 32 Mbytes, 48 Mbytes, 64 Mbytes</td>
</tr>
<tr>
<td>Intel®US15W/US15WP/WPT/GM45/GL40/GS45, Q45</td>
<td>64 Mbytes, 128 Mbytes, 256 Mbytes</td>
</tr>
<tr>
<td>Intel® Q35, Q965/GLE960/GME965</td>
<td>0, 1 Mbyte, 4 Mbytes, 8 Mbytes, 16 Mbytes, 32 Mbytes, 48 Mbytes, 64 Mbytes</td>
</tr>
<tr>
<td>Intel® 945G/945GME/945GSE</td>
<td>0, 1 Mbyte, 8 Mbytes</td>
</tr>
<tr>
<td>Intel® 915GV/915GME/910GMLE</td>
<td>0, 1 Mbyte, 8 Mbytes</td>
</tr>
</tbody>
</table>
3.9.3 **AGP (Accelerated Graphics Port) Aperture Size**

The AGP Aperture size controls the total amount of graphics memory that can be mapped in the AGP Aperture. This value can be set from 64 Mbytes up to 256 Mbytes, depending on the chipset. Refer to specific chipset details for information on the valid range.

3.10 **VBIOS and Driver Configuration**

The Intel Embedded Graphics Suite allows user configuration of both the VBIOS and graphics driver as well as programming of Detailed Timing Descriptors (DTDs) for EDID-less panels for both the VBIOS and graphics driver. This is accomplished using CED, which offers several ways to input DTDs, each associated with a potential target panel and display mode for the system. CED generates DTD and configuration settings used by the IEGD VBIOS, Linux, and/or Windows drivers.

The following example is for a 945GME system setup with just an internal LVDS and sample timing parameters for illustration purposes only. You can use this example to set up DTD timings that are specific to your non-standard panels and then activate the panels using a custom mode.

To create a configuration and configure the LVDS options:

1. Create a custom DTD as described in Section 3.4, “Creating a New Customized DTD” on page 32.
2. From the CED main screen, select **New Configuration**.
3. Enter a name for the configuration in the text box provided, for example, LVDS_test.
4. Select the platform chipset. This example uses the 945GME chipset.
5. In the list of available ports, select LVDS and then click **Next**.
6. On the LVDS Configuration Page, clear the checkboxes for **Use EDID Display if available** and **Use driver built-in standard timings**.
7. Select the checkbox for **Use user-defined DTDs**.
8. In the Encoder Configuration section, select **Internal LVDS**.
9. In the Custom Display Timing Descriptors (DTDs) list, select the DTD you created in Section 3.4, “Creating a New Customized DTD” on page 32 for example, test_LVDS.

The screen will be similar to the example below.
9. Click **Next**.

10. (Optional) Configure Fastboot options as described in “Configuring Fastboot” on page 51.

11. Click **Next**.

To set the custom mode:

1. From the IEGD Configuration Editor screen, in the Primary Display Mode section, clear the **Use Default** checkbox.

2. In the Primary Non-standard Modes section, select the checkbox for **Custom**.

3. In the Primary Non-standard Modes section, enter 0x120 in the Default Mode Settings text box. (See a description of the custom modes.)

 The screen will be similar to the example below.
Custom Modes

The custom modes begin with 0x120 (0x121 and 0x122 are the same modes in different pixel formats). If there was a second custom mode entered it would begin with 0x123 to 0x125.

From the above DTD 200x200 example, this is what the custom modes represent:

- 0x120 200x200@8bpp
- 0x121 200x200@16bpp
- 0x122 200x200@32bpp
And if the second custom mode was a 400x400 panel, its custom modes would be:
0x123 400x400@8bpp
0x124 400x400@16bpp
0x125 400x400@32bpp

3.11 Configuration Options

The table below describes available IEGD settings. The gray rows are block headings and the non-gray rows that follow each heading are settings within the block. Some of these block headings are contained within prior block headings.

Table 24. Parameter Configuration Format (Sheet 1 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigID</td>
<td>Integer (1-15)</td>
<td>Optional keyword used to specify which configuration is used. The config ID specified here must match one of the configuration IDs defined with CED. If this keyword is omitted, all configurations specified in the config file are used. Note that this keyword is not required for Linux OS and VBIOS configurations.</td>
</tr>
<tr>
<td>Config</td>
<td>Integer (1-15)</td>
<td>More than one configuration is valid.</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>A quoted string used to identify the origin of the .bin or .inf file.</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>A quoted string used to identify the configuration name. Name is a required field for VBIOS configuration.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>Settings that are generic to the configuration.</td>
</tr>
<tr>
<td>DisplayConfig</td>
<td>1 – Single 2 – Clone 4 – Twin 8 – Extended</td>
<td>Used to configure initial state of attached displays. 1 – Single. A single display. 2 – Clone. Primary and secondary displays enabled and configured with separate timing pipes. This allows different timings to be applied to each display. Resolutions can be different on both displays. 4 – Twin. Primary and secondary displays are enabled, but with only a single pipe. Both displays share the same resolutions and timings. 8 – Extended. Configures separate pipes to allow primary and secondary displays to have different resolutions and display different content. Upon first boot after the driver installation, this option will enable only the primary display, as the extended modes must be enabled in the operating system (i.e., Extended Desktop in the Display Properties sheet within Microsoft Windows).</td>
</tr>
<tr>
<td>DisplayDetect</td>
<td>0 – Disable 1 – Enable</td>
<td>Enable or disable Display Detection. Note that this parameter must be Enabled in order to use COMMON_TO_PORT values. Default is 0. Please see Section 3.12, "Display Detection and Initialization" on page 78 for detailed information on this parameter.</td>
</tr>
</tbody>
</table>
Table 24. Parameter Configuration Format (Sheet 2 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortOrder</td>
<td>PortOrder must be specified as a quoted string containing five digits. The valid values are: 1 - Integrated TV Encoder (mobile chipsets only) 2 - sDVO B port 3 - sDVO C port 4 - Integrated LVDS port (mobile chipsets only) 5 - Analog CRT port 6 - Internal HDMI Default: 0 for all keys</td>
<td>Search order for detecting attached displays for the Display Detection feature. When Display Detection is enabled, the PortOrder determines which display is primary and which display is secondary. The port search order can be specified to ensure the port device (sDVO device) is found, based on the system integrator’s routing choices. Default ordering is chosen by specifying zeros in the PortOrder keys. Default ordering is chipset specific; see Table 56, “Default Search Order” on page 222. Please see Section 3.12, “Display Detection and Initialization” on page 78 for more information on using PortOrder in combination with the Display Detect feature.</td>
</tr>
<tr>
<td>CloneRefresh = 60</td>
<td>Typical refresh rates (expressed in Hz): 60 Hz, 75 Hz, 85 Hz</td>
<td>Refresh rate for a cloned display.</td>
</tr>
<tr>
<td>OverlayOff</td>
<td>0 - Overlay on (default) 1 - Overlay off</td>
<td>This parameter allows you disable Overlay support, which is enabled by default. Note: This parameter is only for Microsoft Windows* and Microsoft Windows CE. The Linux* OS configuration for the xorg.conf provides a standard option that performs the same function.</td>
</tr>
<tr>
<td>FbBlendOvl</td>
<td>0 - Off (Default) 1 - On</td>
<td>When checked, this enables overlay blending with the framebuffer on both display outputs (if in VEXT mode on Windows CE) on US15W and when display mode resolution is 32-bit XRGB.</td>
</tr>
<tr>
<td>No_DFB</td>
<td>0 - Off (Default) 1 - On</td>
<td>This parameter enables the IEGD to pass the DIB call back to the OS. This is required in certain circumstances to improve performance.</td>
</tr>
<tr>
<td>vbios</td>
<td></td>
<td>This block contains settings for the Video BIOS. Note that you only need to specify the parameters you are actually using. You do not need to specify all the parameters in this block. If you omit any parameters, the vbios uses the default values.</td>
</tr>
<tr>
<td>COMMON_TO_PORT</td>
<td>6 digit value</td>
<td>Maps the ports from the system BIOS to a port number used by the graphics hardware. Please see Section 4.3.2, “Configuring the Video BIOS” on page 93 for more information on this parameter. Note that the displaydetect parameter must be set to Enabled in order for the COMMON_TO_PORT values to be used. The default is all zeroes: 000000</td>
</tr>
</tbody>
</table>
Table 24. Parameter Configuration Format (Sheet 3 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| post_display_msg| 0 - disable greater than 0 - enable and display POST message for the specified number of seconds | Enables or disables the POST (Power On Self Test) message. When you specify a value greater than 0, the message is displayed for the specified number of seconds. For example:

```
post_display_msg = 5
```

This enables the POST message and displays it for approximately 5 seconds. The maximum value that can be entered here is 65535.

The default is 1, enable and display the POST message for approximately 1 second. |
| oem_string | double-quoted string | This string appears on the display when the post_display_msg is enabled and the VBIOS starts up. The maximum string length is 100 characters.

The default is " " (two double quotes with a single space in between). |
| oem_vendor | double-quoted string | This string appears on the display when the post_display_msg is enabled and the VBIOS starts up. The maximum string length is 80 characters.

The default is " " (two double quotes with a single space in between). |
| oem_product_name| double-quoted string | This string appears on the display when the post_display_msg is enabled and the VBIOS starts up. The maximum string length is 80 characters.

The default is " " (two double quotes with a single space in between). |
| oem_product_rev | double-quoted string | This string appears on the display when the post_display_msg is enabled and the VBIOS starts up. The maximum string length is 80 characters.

The default is " " (two double quotes with a single space in between). |
Table 24. Parameter Configuration Format (Sheet 4 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| int15 | 5 digits | This parameter allows you to enable or disable the five System BIOS 15h interrupt hooks. The value must be 5 digits in length. Each digit is associated with one of the five System BIOS interrupt 15h hooks as shown below (left to right): 1 - 5F31h, POST Completion Notification Hook 2 - 5F33h, Hook After Mode Set 3 - 5F35h, Boot Display Device Hook 4 - 5F36h, Boot TV Format Hook 5 - 5F38h, Hook Before Set Mode

(Please see Appendix C for more information on 5F functions.)

The value of each digit must be a 0 or a 1 as follows: 0 - disable a System BIOS 15h hook 1 - enable a System BIOS 15h hook

For example,

```
int15 = 11001
```

Enables 5F31h, 5F33h, and 5F38h hooks only. The 5F35h and 5F36h hooks are disabled. The default is 11111, enable all five hooks. |
| port | 1 - Integrated TV Encoder (mobile chipsets only)
2 - sDVO B port
3 - sDVO C port
4 - Integrated LVDS port (mobile chipsets only)
5 - Analog CRT port | Used to define port specific settings. |
| rotation | Windows OS Range:
0x0 or 0 – 0 degrees
0x5A or 90 – 90 degrees
0x84 or 180 – 180 degrees
0x10E or 270 – 270 degrees
Linux OS Range:
0 – 0 degrees
90 – 90 degrees
180 – 180 degrees
270 – 270 degrees
Default: 0 | Rotation of the display.
Note: For Windows CE Static rotation, setting the width and height to the rotated values is no longer required with the improvements beginning in v10.1. |
| flip | Windows OS:
0x0 or 0 – turn off horizontal flip
0x1 or 1 – turn on horizontal flip
Default: 0

Linux OS Boolean:
on - horizontal flip
off - no horizontal flip
Default: off | Flip of the display. |
Platform Configuration Using CED

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| **centeroff** | Default: 0 - disabled, allow centering and add compatibility modes
1 - enabled, no centering, no added compatibility modes | When this option is enabled it DISABlES centering. Also, depending on the combination of "edid" + "user-dtd" + connected hardware, IEGD will add missing compatibility modes (6x4, 8x6, 10x7& 12x10) via centering. Use this option to disable this feature. |
| **edid** | 0 - Do not read EDID from panel/CRT
1 - Attempt to extract EDID timing data from panel/CRT | If VBIOS/driver reads EDID from panel/CRT. |
| **edid_avail**| Range [16 bits]
Valid values (specified in hex):
bit 0 - Do not use driver built-in standard timings
1 - Use driver built-in standard timings
bit 1 (not applicable to edid_not_avail)

0 - Do not use EDID block
1 - Use EDID block and filter modes
bit 2

0 - Do not use user-defined DTDs
1 - Use user-defined DTDs
bit3 - bit15
-------- | These two parameters are used to control the available timings for any display. edid_avail is used when EDID values are read from the display. If an attempt to read EDID from the display fails or the edid parameter is set to 0, then the driver uses the edid_not_avail flags. The value for both parameters must be specified as a hex value.
Defaults:
edid_avail: 3 (hex). Bit 0 = 1, Bit 1 = 1, Bit 2 =0 (Use driver built-in standard timings and EDID block and filter modes.)
edid_not_avail: 1 (hex). Bit 0 = 1, Bit 1 = 0, Bit 2 = 0. (Use driver-built-in standard timings.)
Please see Section 3.13, "Advanced EDID Configuration" on page 80 for detailed information. |
| **multidvo** | 0 - Do not attempt to detect a second decoder of same type
1 - After detect of a decoder, continue to attempt detection of same type of decoder until fail | If VBIOS/driver detects a second decoder of same type.
This value is hard-coded to "1" for Windows configuration and will ignore this setting. |
| **dvo** | sDVO device information. | |
| **i2cpin** | <0-6> | The GPIO pin pair used on the I²C bus to read and write to sDVO device registers. |
| **ddcpin** | <0-6> | The GPIO pin pair used as DDC bus to read panel EDID data. |
| **i2cdab** | <0x00-0xffff> | I²C device address for reading and writing device registers.
The device address should be in 8-bit format with the 7-bit slave address assigned to its bits 7:1 and bit 0 set to 0. |
| **ddcdab** | <0x00-0xffff> | I²C device address for reading EDID data from display through the DDC bus. |
| **i2cspeed** | [10-400], Units in KHz | Speed of I²C bus for sDVO device. |
| **ddcspeed** | [10-400], Units in KHz | Speed of I²C bus for EDID device. |
| **fpinfo** | Panel-specific information. | |
Table 24. Parameter Configuration Format (Sheet 6 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bkltmethod</td>
<td>Range [0-3]</td>
<td>Instructs which backlight method is required for the panel attached to the given port. If zero is supplied, or the key is not present, then no backlight control is provided.</td>
</tr>
<tr>
<td></td>
<td>0 – no backlight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 – Port Driver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 – GMCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 – ICH</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>The only supported parameter for internal LVDS is 1 – Port Driver</td>
<td></td>
</tr>
<tr>
<td>bkltt1</td>
<td>Range [0 -0xff]. Units of 1ms = > the limit specified in your hardware specifications. For example, the maximum for the CH7307 is 409 ms.</td>
<td>(T1) Time delay between VDD active, and sDVO clock/data active. Zero indicates no delay required.</td>
</tr>
<tr>
<td>bkltt2</td>
<td>Range [0 -0xfff].</td>
<td>(T2) Time delay between sDVO clock/data active and Backlight enable.</td>
</tr>
<tr>
<td>bkltt3</td>
<td></td>
<td>(T3) Time delay between Backlight disable and sDVO clock/data inactive.</td>
</tr>
<tr>
<td>bkltt4</td>
<td></td>
<td>(T4) Time delay between sDVO clock/data inactive and VDD inactive.</td>
</tr>
<tr>
<td>bkltt5</td>
<td></td>
<td>(T5) Minimum delay between VDD inactive, and active.</td>
</tr>
<tr>
<td>gpiopinvee</td>
<td>Valid ICH GPIO pin, 0 indexed</td>
<td>GPIO connection for panel power.</td>
</tr>
<tr>
<td>gpiopinvdd</td>
<td>For example: gpiopinvdd = 3</td>
<td>GPIO connection for backlight power on/off sequencing signal.</td>
</tr>
<tr>
<td></td>
<td>gpiopinvee = 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gpiopinenable = 1</td>
<td></td>
</tr>
<tr>
<td>gpiopinbklt</td>
<td></td>
<td>GPIO to enable backlight signal.</td>
</tr>
<tr>
<td>UseGMCHClockPin</td>
<td>1 - Flat panel is connected to the clock pin</td>
<td>This entry is needed when GMCH is selected as backlight control method.</td>
</tr>
<tr>
<td></td>
<td>0 - Flat panel is not connected to the clock pin</td>
<td></td>
</tr>
<tr>
<td>UseGMCHDataPin</td>
<td>1 - Flat panel is connected to the data pin</td>
<td>This entry is needed when GMCH is selected as backlight control method.</td>
</tr>
<tr>
<td></td>
<td>0 - Flat panel is not connected to the data pin</td>
<td></td>
</tr>
<tr>
<td>p_clock</td>
<td>Range [0-0x7fffffff]</td>
<td>Pixel clock value in KHz.</td>
</tr>
<tr>
<td>h_active</td>
<td>Range 0-4096 [12 bits]</td>
<td>Horizontal Active.</td>
</tr>
<tr>
<td>v_active</td>
<td>Range 0-4096 [12 bits]</td>
<td>Vertical Active.</td>
</tr>
<tr>
<td>h_sync</td>
<td>Range 0-1024 [10 bits]</td>
<td>Horizontal Sync Offset.</td>
</tr>
<tr>
<td>v_sync</td>
<td>Range 0-64 [6 bits]</td>
<td>Vertical Sync Offset.</td>
</tr>
<tr>
<td>h_syncp</td>
<td>Range 0-1024 [10 bits]</td>
<td>Horizontal Sync Pulse Offset.</td>
</tr>
<tr>
<td>v_syncp</td>
<td>Range 0-64 [6 bits]</td>
<td>Vertical Sync Pulse Width.</td>
</tr>
<tr>
<td>h_blank</td>
<td>Range 0-4096 [12 bits]</td>
<td>Horizontal Blanking.</td>
</tr>
<tr>
<td>h_border</td>
<td>Range 0-256 [8 bits]</td>
<td>Horizontal Border. Currently not supported.</td>
</tr>
<tr>
<td>v_border</td>
<td>Range 0-256 [8 bits]</td>
<td>Vertical Border. Currently not supported.</td>
</tr>
</tbody>
</table>
Table 24. Parameter Configuration Format (Sheet 7 of 7)

<table>
<thead>
<tr>
<th>Name</th>
<th>Range/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td>Range [32 bits]</td>
<td>Interlace, Horizontal polarity, Vertical polarity, Sync Configuration, etc. Note that these flags are IEGD specific and do not correspond to VESA 3.0 flags. For example, to set Interlaced with Horizontal Sync Polarity high (bits 31 and 26), then the flags value = 0x84000000. (Binary = 10000100000000000000000000000000)</td>
</tr>
<tr>
<td>attr</td>
<td>0-0xFFFF</td>
<td>Attribute values that are specific to the sDVO device for the port. See Appendix B, “Port Driver Attributes” for specific attribute IDs and associated values.</td>
</tr>
<tr>
<td>id</td>
<td><Attribute ID> 0 - 2^{32}</td>
<td>id = <value>. Both the Attribute ID and its value should be specified in decimal. For example, to set brightness to 50, you specify id 0 = 50. See Appendix B, “Port Driver Attributes”.</td>
</tr>
</tbody>
</table>
3.12 Display Detection and Initialization

The Display Detection and Initialization feature, when enabled, automatically detects displays and allocates ports without the need to change any configuration files. This feature is off by default and can be enabled either through CED or by directly editing the iegd.inf file for Microsoft Windows or the xorg.conf file for the Linux OS.

To enable the feature via CED, select the DisplayDetect option on the CED Chipset Configuration page. Please see Section 3.5, “Creating a New Configuration” on page 36 or CED online help for more information.

Alternatively, you can enable the feature in Microsoft Windows by entering the following line in the [iegd_SoftwareDeviceSettings] section of the iegd.inf file:

```
HKR, All\<ConfigID>\General, DisplayDetect, %REG_DWORD%, 1
```

where <ConfigID> is the configuration ID (without the angle brackets).

To enable the feature in the Linux OS, enter the following line Option setting in the xorg.conf file:

```
Option “Config/<ConfigID>/General/DisplayDetect” “1”
```

When the display detection feature is enabled, ports are allocated only when the display satisfies the following conditions:

1. The port is not in use (that is, it is not already allocated).
2. The display is detected by the port driver.

The first port that passes these conditions is allocated. If condition 2 fails for all ports, then the first port in the PortOrder setting that passes condition 1 is allocated. If the port is not detectable (specifically the internal LVDS or external LVDS using CH7308), the driver assumes the display is connected. Condition number 2 always passes for these displays.

When this feature is disabled, display allocation is done based on PortOrder and no display detection is performed.

3.12.1 Display Detect Operation

This section describes the logic of the Display Detection feature and provides several examples.

1. If Display Detect is disabled, the driver uses the first two ports identified in the PortOrder.
2. If Display Detect is enabled and you are using the 10.3.1 version of the VBIOS, the VBIOS performs the display detection. The driver then checks to see if the VBIOS returns the display allocations and if it does, the driver does not re-execute the display detection steps.
 If you are not using the v10.3.1 Legacy VBIOS, then the driver performs display discovery as described in the following steps.
3. The number of displays to be detected is based on the DisplayConfig settings in the configuration. If this is set to Single, then only one display is detected. If it is set to any other value, a maximum of two displays will be detected.
4. The IEGD goes through each port in the PortOrder settings and attempts to detect a display using the following algorithm:

 a. If a display is detected, it is based on the PortOrder sequence. Display allocation of the port is performed once the display has been detected. For example:

 PortOrder = "53240" (CRT, sDVO, LVDS)
 Displays Connected = CRT

 Primary display allocation: Searches for a display connected according to the PortOrder sequence. The first detected display is a CRT, so the Primary display is CRT.

 Secondary display allocation: Searches for a display connected according to the PortOrder sequence. The first detected and non-allocated display is sDVO, so the Secondary display is sDVO.

 b. If no display is detected on any of the ports, then the DisplayDetect option is turned off and ports are allocated in the order defined by PortOrder. For example:

 PortOrder = "32000"
 Displays Connected = None

 Primary display allocation: Searches for a display connected according to the PortOrder. Because no displays are detected, the Primary display is set to sDVO-C.

 c. The driver cannot detect the presence of a display connected to the Internal LVDS and external LVDS displays connected to some sDVO devices (for example, an LVDS connected to the CH7308). Consequently, the driver assumes that an LVDS display is connected if it is in the PortOrder. If you only want to use the internal LVDS when no CRT and devices are connected, then put LVDS in the PortOrder after them. For example:

 PortOrder = "53240" (CRT, LVDS)
 Display Connected = None

 Primary display allocation: Searches for a display connected according to the PortOrder sequence. Since no display is connected and since LVDS is specified in the PortOrder, the driver assumes that an LVDS display is connected. Consequently, the Primary display is set to LVDS.

 d. Because the driver cannot detect the presence of a display connected to the Internal LVDS and certain external LVDS displays, it therefore always assumes that they are connected if they are listed in the PortOrder. Be careful not to set the PortOrder that prevents the driver from detecting a connected display. For example:

 PortOrder = "54320" (CRT, LVDS sDVO)
 Displays Connected = CRT

 Primary display allocation: Searches for a display connected according to the PortOrder. In this case, the Primary display is set to CRT.

 Secondary display allocation: Searches for a display connected according to the PortOrder. Even though sDVO is connected, the driver assumes that the internal LVDS is also connected. Consequently, the driver never detects the display connected to the sDVO port. To change this, move sDVO-C before LVDS in the PortOrder ("53420" rather than "54320").

 e. If the port drivers are not loaded for any of the ports specified in the PortOrder, the driver enables port 5 (CRT) only. For example:

 PortOrder = "32000" (sDVO)
 PortDrivers = "" (None)

 Primary display allocation: Searches for displays connected according to the PortOrder. Since no port drivers are available for the specified ports, CRT port 5 is enabled. Consequently, the Primary display is set to CRT.
3.12.2 Detectable Displays

The table below provides a list of displays that are detectable by the IEGD.

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Display Type</th>
<th>Detectable by IEGD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMCH Analog CRT</td>
<td>VGA</td>
<td>Yes</td>
</tr>
<tr>
<td>GMCH Integrated LVDS</td>
<td>LVDS</td>
<td>No (assumed attached)</td>
</tr>
<tr>
<td>GMCH Integrated TV Out</td>
<td>TV Out</td>
<td>N/A</td>
</tr>
<tr>
<td>CH7022</td>
<td>VGA Bypass</td>
<td>Yes</td>
</tr>
<tr>
<td>CH7307</td>
<td>DVI</td>
<td>Yes</td>
</tr>
<tr>
<td>CH7308</td>
<td>LVDS</td>
<td>No (assumed attached)</td>
</tr>
<tr>
<td>CH7315</td>
<td>HDMI/DVI</td>
<td>Yes</td>
</tr>
<tr>
<td>CH7317</td>
<td>VGA Bypass</td>
<td>Yes</td>
</tr>
<tr>
<td>CH7319</td>
<td>DVI</td>
<td>Yes</td>
</tr>
<tr>
<td>CH7320</td>
<td>DVI</td>
<td>Yes</td>
</tr>
<tr>
<td>SiI 1362</td>
<td>DVI</td>
<td>Yes</td>
</tr>
<tr>
<td>SiI 1364</td>
<td>DVI</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3.13 Advanced EDID Configuration

Shown in the following EDID Options example, the If EDID Device (edid_avail) and If Not EDID Device (edid_not_avail) options in CED are found on the CRT, sDVO, LVDS, and TV Out configuration pages.

These options control the available timings for any display. The edid_avail parameter is used when EDID information is read from the display. If the driver is unable to read EDID information from the display or if the edid parameter is set to “0” (disable), then the settings of the edid_not_avail parameter are used.

The default behavior of edid_avail is to use the driver’s built-in standard timings and EDID block and filter modes. The default for edid_not_avail is to use the driver’s built-in standard timings. Please see Table 24 in Section 3.11 for more information on these parameters.
The IEGD supports three different types of EDID display modes:

1. **Built-in display modes.** These modes are hard-coded in the IEGD. These modes can be filtered based on the EDID block.

2. **EDID-DTDs:** These are Detailed Timing Descriptors read from the EDID block. EDID can have these DTDs along with other information about the display.

3. **User-specified DTDs** defined in CED. See Section 3.13.2.

The Advanced EDID Configuration supports different possible combinations of display modes when an EDID display is present along with user-specified DTDs.

3.13.1 Sample Advanced EDID Configurations

The table below presents various EDID configurations and the EDID settings in CED used for those configurations.

Table 26. Sample Advanced EDID Configurations

<table>
<thead>
<tr>
<th>Configurations</th>
<th>CED Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use only filtered built-in and any EDID-DTDs when the display has EDID information 2. Use all built-in modes when the display does not contain EDID information</td>
<td>edid = 1 edid_avail = 3 edid_not_avail = 1</td>
<td>Default values.</td>
</tr>
<tr>
<td>1. Use only filtered built-in modes and EDID-DTDs when the display has EDID. 2. Use only user-DTDs otherwise.</td>
<td>edid = 1 edid_avail = 3 edid_not_avail = 4</td>
<td>This configuration allows the IEGD to use its built-in display modes and the modes provided by the display. If the IEGD is unable to read EDID information from the display, then the IEGD uses the user-DTDs defined in CED.</td>
</tr>
<tr>
<td>1. Use only user-DTDs regardless of connected display. (Typically used for a custom panel that only supports user-defined DTDs.) 2. Use limited set of timings when a panel EDID is present, but the IEGD cannot read the EDID information.</td>
<td>edid = 0 edid_avail = (any value) edid_not_avail = 4</td>
<td>Only user-DTDs defined in CED are used.</td>
</tr>
<tr>
<td>1. Use EDID-DTDs for an EDID display. 2. Use user-DTDs for a non-EDID display.</td>
<td>edid = 1 edid_avail = 2 edid_not_avail = 4</td>
<td>This configuration uses the EDID-DTDs when an EDID display is detected and EDID information is read from the display. If the driver detects a non-EDID display, then the IEGD uses user-DTDs defined in CED.</td>
</tr>
<tr>
<td>1. Use only EDID-DTDs and user-DTDs for an EDID display. 2. Use user-DTDs only for a non-EDID display.</td>
<td>edid = 1 edid_avail = 6 edid_not_avail = 4</td>
<td>This configuration uses both EDID-DTDs and user-DTDs when the IEGD detects an EDID display. If the driver detects a non-EDID display, then the IEGD uses user-DTDs defined in CED.</td>
</tr>
</tbody>
</table>

3.13.2 User-Specified DTDs

CED provides the ability to input DTD data directly. There are numerous sources of DTD data: VESA, panel manufacturers, etc. See [Creating a New Customized DTD](#) for more information.
3.14 Using an External PCI Graphics Adapter as the Primary Device

The IEGD can be configured to work with an external PCI graphics adapter card as the primary graphics adapter device with the Intel internal graphics device (GMCH) as the secondary graphics device. You can configure your system to boot with a PCI graphics adapter in the System BIOS. When an external PCI graphics adapter is designated as the primary graphics adapter, the Intel GMCH becomes the secondary graphics device.

Note:

The term *secondary* adapter refers to the adapter that is not the *boot-up*, or VGA-Compatible, adapter. The secondary adapter is not necessarily the secondary display as assigned by the OS.

You can configure an external PCI card to work with the IEGD as follows:
- The external PCI card as the primary graphics adapter and the GMCH internal graphics device as the secondary.
- The external PCI card as the secondary graphics adapter and the GMCH internal graphics device as the primary.

Note:

This feature is not supported on Microsoft Windows CE systems.

The IEGD allows you to specify which display is primary, secondary, and tertiary. It allows Twin and Clone configurations on the internal graphics device when the external PCI display is the primary graphics adapter. It also allows Twin and Clone configurations on the internal graphics device when the external PCI device is the secondary graphics adapter.

An external PCI graphics driver runs independently without sharing resources with the IEGD.

The following figures show several configurations when an external PCI adapter is the primary graphics device and when it is the secondary graphics device.

Figure 24 shows an External PCI card as the primary graphics adapter card and the IEGD driver as the secondary. The drivers do not share hardware resources. The OS decides the framebuffer content and handles that by drawing to the respective driver independently.
Figure 24. **External PCI Graphics Card as Primary Driver and IEGD as Secondary Driver**

![Diagram of External PCI Graphics Card as Primary Driver and IEGD as Secondary Driver]

Figure 25 shows the interaction between the IEGD driver and the External VGA driver when the IEGD is booted as the primary driver. Again, the drivers do not share hardware resources. The OS decides the framebuffer content and handles it by drawing to the respective driver independently.

Figure 25. **IEGD as Primary Driver and External PCI Graphics Card as Secondary Driver**

![Diagram of IEGD as Primary Driver and External PCI Graphics Card as Secondary Driver]
Figure 26 shows a sample configuration where the internal graphics device is primary and configured to use two ports to drive two displays while an external PCI graphics adapter is used to drive a tertiary display. Note that regardless of the number of ports being assigned to a driver, the external PCI graphics run independently without sharing resources with the IEGD driver.

Figure 26. IEGD as Primary Driver with Two Displays and External PCI Driving a Tertiary Display

3.15 Hybrid Multi-monitor

Hybrid multi-monitor support, defined as a PCI- or PCI Express*-based external graphics card operating concurrently with Intel’s chipset’s integrated graphics, is supported with IEGD.

This feature enables concurrent operation of Intel’s integrated GPU along with a discrete GPU solution, allowing for operability of greater than two independently driven displays. It is also known as “Multi-GPU” and/or “Multi-monitor.”

Intel chipsets that support this feature include the Intel® Q45/G41/G45 Express chipsets and the Intel® GM45/GL40/GS45 Express Mobile chipsets. **Please verify with your Intel field representative to determine whether your particular Intel chipset has been validated as supporting this capability before attempting to use this feature.**

The external PCI-Express graphics card will need to have “well behaved” VBIOS and drivers for this feature to operate successfully. Failure to operate usually indicates a system BIOS issue, external card VBIOS issue, or external card driver issue.

IEGD is validated as supporting this capability using known good external cards. Inquire with your Intel field representative if your chosen graphics card has been validated as supporting hybrid multi-monitor before attempting this function.
For Windows operating systems (such as XP, XP Embedded, Embedded Standard 2009, etc.), Windows Display Properties Settings should be used to manage the heterogeneous display adapters, resolutions, color quality levels, and refresh rates. IEGD and the Display Properties configure the multiple displays appropriately which includes user assignment of Intel’s internal chipset graphics as the primary, secondary, tertiary, or quad ports which dictate where the desktop content will appear. The external graphics card and drivers activate the alternate port(s) not driven by the Intel chipset.

Hybrid multi-monitor support is also enabled by IEGD under most Linux Operating systems.

For more details on this feature and a step-by-step Enablement Process for Hybrid multi-monitor, refer to Intel’s white paper titled Hybrid Multi-monitor Support; Enabling new usage models for Intel® Embedded Platforms. This is found on Embedded Design Center at http://edc.intel.com/Software/Downloads/IEGD/#download; search for document number 323214.

3.16 Enhanced Clone Mode Support

The Enhanced Clone Mode feature allows you to specify a clone display size that is different from the primary display. It also allows you to change the clone display size at runtime using the IEGD Runtime GUI (see Section 5.6, “Viewing and Changing the Driver Configuration from Microsoft Windows” on page 113 or Section 7.7, “Runtime Configuration GUI” on page 200 for Linux systems).

In Clone mode, the framebuffer is always allocated to match the primary display size. On the clone display (secondary display) the image is centered if the display is bigger than the framebuffer. Centering is done only if the requested resolution and refresh rate is not available for the clone display.

Extended Clone mode is implemented through the use of four CED parameters:

- Clone Width — allows you to specify a width for the clone display
- Clone Height — allows you to specify a height for the clone display
- Clone Refresh — allows you to specify a refresh rate for the clone display
- Enable interlace mode — allows you to use interlace mode for the clone display

3.16.1 Extended Clone Mode CED Configuration

The following CED screenshot shows a sample Extended Clone mode setting configuration.
See also “Sample Clone Mode Configurations”.
3.16.2 Sample Clone Mode Configurations

The following examples illustrate Clone Mode configurations for the following combinations:

- CRT + integrated LVDS (Example 1 on page 87)
- CRT + Fixed size DVI display (Example 2 on page 87)

Example 1. Mobile Intel® GM45 Express Chipset, Internal LVDS, CRT, and LVDS

This example shows how to set up a clone mode configuration consisting of an internal LVDS, CRT, and external LVDS device.

1. Choose a CRT that supports resolutions larger than 1024x768 and configure the following settings on the Chipset Configuration Page:
 - Platform Chipset = Mobile Intel® GM45 Express Chipset
 - Display Configuration Mode = Clone
 - Clone Width = 1024
 - Clone Height = 768
 - Clone Refresh = 60
 - Port Order = CRT, LVDS

2. Click Next on the Chipset Configuration Page and provide port names for the CRT, LVDS, and sDVO-B port devices.

3. On the LVDS Port Configuration Page, click the Flat Panel Settings button and set the Width and Height to 1024 and 768 respectively.

4. Package and generate an installation for the configuration and move the resulting iegd.inf file to the target machine. (Please see “Creating a New Package” on page 57 for specific instructions.)

After you have moved the iegd.inf file to the target machine, do the following:

1. Set 800x600 on CRT and ensure that an 800x600 image appears at the top, left corner of the LVDS display or that the image has been scaled to match the panel size based on panel used.

2. Set 1280x1024 on CRT and check that the LVDS display is panning. Ensure that the clone mouse pointer is in sync with the primary display.

Example 2. Intel® 915GV, Chrontel 7307, CRT, and DVI

This sample shows how to set up a clone mode configuration consisting of a CRT and DVI display on a Chrontel® 7307 serial sDVO transmitter.

1. Choose a CRT that supports resolutions larger than 1024x768 and configure the following settings on the Chipset Configuration Page:
 - Platform Chipset = Intel® 915GV
 - Display Configuration Mode = Clone
 - Clone Width = 1024
 - Clone Height = 768
 - Clone Refresh = 60
 - Port Order = CRT, sDVO-B

2. Click Next on the Chipset Configuration Page and provide port names for the CRT and sDVO-B port devices.
3. On the sDVO-B Port Configuration Page, click the **Flat Panel Settings** button and set the Width and Height to **1024** and **768** respectively. Select **CH7307** from the Select sDVO Device list.

4. Package and generate an installation for the configuration and move the resulting **iegd.inf** file to the target machine. (Please see “Creating a New Package” on page 57 for specific instructions.)

After you have moved the **iegd.inf** file to the target machine, do the following:

1. Set 800x600 on CRT and ensure that an 800x600 image appears at the top, left corner of the DVI display or that the image has been scaled to match the panel size based on panel used.

2. Set 1280x1024 on CRT and check that the DVI display is in panning mode. Ensure that the clone mouse pointer is in sync with the primary display.

3.17 Scaling and Centering Configurations

This release supports the following scaling and centering configurations:

- Upscaling for the Chrontel CH7308 LVDS Transmitters
- Internal LVDS Scaling With EDID Panels
- Alignment in Clone mode
- sDVO as Primary
- Render Scaling modes to native panels connected to non-scaling port encoders

See the following topics for configuration details:

- “Upscaling for the Chrontel CH7308 LVDS Transmitters”
- “Internal LVDS Scaling with EDID Panels”
- “Centering Primary Display with Scaling Encoders”
- “Enabling Render Scaling on Port Encoders without Hardware Scaling”
- “Alignment in Clone Mode”

3.17.1 Upscaling for the Chrontel CH7308 LVDS Transmitters

The IEGD can upscale lower-resolution modes (those smaller than the size of the respective panel) to the native size of the panel connected to a Chrontel CH7308* LVDS transmitter.

The IEGD uses a user-supplied DTD with the native flag set (also known as native DTD) as native timing for the panel connected to either a CH7308 transmitter.

If a native DTD is not supplied by the user, the IEGD takes the first available matching **FP** info **width** and **height** timings as native timing for the panel if standard timings were selected as part of **edid_avail** or **edid_not_avail** flags.

In order to support upscaling, the LVDS transmitters require the pipe to be set to native timing of the panel regardless of the user selected resolution. It also requires finding the native timing (also known as native DTD) of the panel based on user-supplied configuration information.

The CH7308 (sDVO) port drivers make the list of supported modes limited up to the size of panel. The port drivers also mark one of the timings as native DTD as follows (it goes to the next step only if native DTD is not found in the current step).
1. It finds the timing with the user-defined DTD with the native DTD flag set. This becomes the native DTD for the panel.

2. If the panel is an EDID panel and user selected to use EDID DTDs, then the port driver marks the EDID DTD as native DTD.

3. If the user supplies a DTD without the native DTD flag set, then the port driver marks this one as the native DTD.

4. If none of the above steps works, the port driver finds the first matching timing for FP width, height and marks it as native DTD.

If none of the above steps work, then there is no native DTD and no upscaling is performed.

3.17.2 Internal LVDS Scaling with EDID Panels

The Internal LVDS connected to an EDID Panel supports scaling of modes other than native mode. To support this, the port driver exports information to the EDID parser that it can scale. The EDID parser does not remove other modes (that is, non-native modes) from the mode table. It only marks the native mode. When the IEGD queries the port driver on which modes are supported, the port driver then removes any modes that cannot be scaled (up or down depending on the port's hardware capability). When mode-setting occurs, the second display in Clone mode can indeed support non-native modes even though the panel had EDID. This occurs only if a native mode can be found the port driver can scale. Otherwise, the port driver ignores the scaling information and the IEGD proceeds normally.

The driver also supports Internal LVDS Scaling on EDID-less panels. The steps that enable this are the same as those described for the scaling of Chrontel LVDS transmitters in Section 3.17.1.

3.17.3 Centering Primary Display with Scaling Encoders

In Clone mode, the IEGD expects the primary display to have a framebuffer size (OS Aware mode) that matches the display's native size of panel timings. When a display is designated as the primary display in a Clone mode configuration, and the user wants the primary to be centered (as explained in Section 3.17.5), users may want this setup to align a primary display on a scaling encoder with a secondary one that can only center. This will not work by default for certain port encoders such as the internal LVDS, which default to hardware scaling. But IEGD has a mechanism to override hardware scaling thus forcing centering.

When possible, the IEGD allows centering of 640x480, 800x600, and 1024x768 resolutions on the primary display. In some cases (depending on panels), the image may appear on the top-left. It may also produce unusable output on some displays (such as a TV). Thus this type of configuration is more appropriate for LVDS panels.

To disable hardware scaling (and force centering for primary display on above modes), users only need to set the "Panel_Fit" attribute (attribute "0x12") to '0' (zero).

3.17.4 Enabling Render Scaling on Port Encoders without Hardware Scaling

The IEGD Render Scaling feature allows the driver to support any one of the standard modes (640x480, 800x600, 1024x768 or 1280x1024) as a drawable framebuffer size output to a native panel and connected via a port encoder that does not hardware scale. To achieve this, the GPU engine repeats all rendering operations twice (from the original OS-targeted back buffer) to a separate front buffer, which is rendered via the 3D engine for scaling. This feature is enabled by turning on the "Panel-Fit" attribute
(attribute 0x12) on a port driver that does not support that attribute. But this only happens if there is a native mode timing (see Section 3.17.1 for information about how native mode timing is determined).

Users should be aware that this feature can impact performance and produce scaled output which is inferior in quality to hardware encoder scaling.

3.17.5 Alignment in Clone Mode

In Clone mode, both can be configured with separate timings and different resolutions. The content is the same on both displays. In the case where resolutions are different on the cloned displays, the display identified as primary drives the display mode and framebuffer size. There are three options for the cloned displays in this situation:

- **Panning:** If the clone display is smaller than the primary display, the displayed image can be off the screen with the display showing only a window into the overall image. Panning allows movement of the window, which is viewing the image based on the movements of the cursor.

- **Centering:** If the clone display is larger than the primary display mode, the display image can be centered in the clone display. Black borders are displayed around the image on the display.

- **Scaling:** There are two types of scaling in Clone mode, as described below.
 - **Hardware Encoder Scaling:** This feature adjusts the resolution of the image from the primary display to fit the resolution of the clone display. This permits scaling up to a larger display (upscaling), or scaling down to a smaller display (downscaling). It also allows the full image to be displayed within the full resolution of the clone display.

 Some systems may have cloned displays that cannot scale but have a primary display that can scale (such as an internal LVDS). In non-panning modes (i.e., centering/hardware scaling), this display combination will result in the primary display being scaled up (internal LVDS) but the clone display will be centered. Section 3.17.3 explains how to force the primary display to center — thus allowing both displays to center. Or, **Render Scaling** as follows explains how to make both displays scale up to full size.

 - **Render Scaling:** For clone display, a situation is possible where the primary display uses a hardware scaling port encoder and the secondary display uses a non-scaling port encoder. Assuming both displays are output via native panels, the resulting output should see the primary scaling of any smaller mode to full panel size. But the secondary display will center the smaller modes. The above explanation (see **Hardware Encoder Scaling**) explains how to align both displays to be centered. Using the Render Scaling feature, the opposite can be achieved. Ensure the non-scaling encoder is primary and enable Render Scaling on that port (see Section 3.17.4). This will make the GPU render-scale the smaller mode and achieve the full panel size. The clone display (now the scaling encoder) will, however, take the render-scaled image as its input (and output) to the clone display panel. This feature will be upgraded in the future so that the clone display can independently take in the original framebuffer image as its input.
4.0 VBIOS

4.1 Overview

The Intel Embedded Video BIOS incorporates many of the features and capabilities of the Intel® Embedded Graphics Drivers. The 10.3.1 version of the VBIOS includes support for the following chipsets:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® Q35 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset

Note: When using the IEGD VBIOS on US15W and installing Linux distributions, only text mode is supported, not graphical with some Linux distributions.

Enabling SMSW is one of the instructions that is used when IEGD VBIOS is setting up its caching functions to increase the boot speed during POST and system bring-up. When Linux* distributions fall back to text mode it is a side effect of the Linux Virtual X86 Engine which does not work well with SMSW. Caching is vital for the IEGD VBIOS and it is using SMSW by design. No changes can be made to the IEGD VBIOS as this would affect its performance. If you need to install Linux distributions using a GUI interface, you can use the GMA VBIOS. The IEGD VBIOS can also be used to install the Linux distributions but this must be done in text mode.

4.2 System Requirements

The new Video BIOS can be built on a host Microsoft Windows* system and moved to the target system. The host system must have a 32-bit Microsoft Windows operating system installed with the capability to execute DOS commands from a command line window.

The target system must contain one of the following Intel chipsets:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
• Intel® 915GV Express chipset
• Mobile Intel® 915GME Express chipset
• Mobile Intel® 910GMLE Express chipset

The target system must contain a minimum of 64 Mbytes of RAM.

4.3 Configuring and Building the VBIOS with CED

The Intel® Embedded VBIOS is built with the Intel Configuration Editor (CED). The VBIOS will use the configuration that you specify in CED. The VBIOS is selected to be built when you specify the Video BIOS as a Target OS in your package configuration. After specifying the Video BIOS, follow all CED prompts, and be sure to select “Generate VBIOS” when available. The VBIOS will then be built when you select “Generate Installation” in CED.

Before building your VBIOS, you must set up your DOS environment with the steps below.

1. Download the Open Watcom* C/C++ compiler from http://www.openwatcom.com. The User Build System for the VBIOS relies on the Open Watcom C/C++ compiler to be able to build a 16-bit DOS binary required for the BIOS. The VBIOS has been tested with version 1.7a of the Open Watcom compiler.

2. Install the Open Watcom* C/C++ compiler using the full or complete option. Do not use the default installation option as it may cause errors when creating the BIOS in CED.

3. Set up directory paths.
 You must set up the PATH environment variable in DOS to be able to execute the Watcom compiler. If Watcom was installed with its default path, CED will by default be able to use it.

When you generate a VBIOS, the CED produces the following folders and files:

- Compiled_VBIOS folder
 - iegdtsr.exe (Terminate and Stay Resident executable)
 - VGA.BIN (Option ROM)
- IEGD_10_3_1_VBIOS.zip (this file is generated by the build system)

The iegdtsr.exe can be copied to any folder on the target machine. To run the TSR, boot the target machine with DOS, and then run the iegdtsr.exe from the DOS command line.

The VGA.bin file is the binary option ROM that can be merged with your system BIOS per the instructions provided by your system BIOS vendor.

The IEGD_10_3_1_VBIOS.zip file contains default builds of the TSR executable and Option ROM for the various chipsets. The filenames are iegdtsr-def.exe and vga-def.bin and are located in the tsr or orom folder of the specific chipset folder (see Figure 27).

For further VBIOS build guidelines, see Section 4.3.3, “Building the VBIOS” on page 95.
4.3.1 Selecting the Build Folder

The 10.3.1 version of the VBIOS contains specific folders used for creating a VBIOS that is either an option ROM (OROM) that can be merged with the system BIOS, or an executable Terminate and Stay Resident (TSR) program for debugging purposes. There are also separate directories for the different chipsets that are supported. CED will build both the TSR and OROM.

Figure 27 shows the directory structure for the Video BIOS libraries contained within CED.

Figure 27. Video BIOS Directory Structure

```
IGED_X_x_VBIOS

Driver

Chipset*

orom

Tsr
```

* Refer to the list of supported chipsets for specific examples.

4.3.2 Configuring the Video BIOS

CED is used to configure the VBIOS. The display settings will be used in the same manner as they are used for the driver.
4.3.2.1 COMMON_TO_PORT

This setting allows you to associate standard display names used in most system BIOSs to specific ports that are recognized by IEGD (e.g., LVDS, sDVO-B, sDVO-C). The VBIOS makes this association when the VBIOS calls the System BIOS Intel® 5F interrupt functions.

This setting is a six digit number, where each digit is associated with one of the system BIOS displays (from left to right):

1 : CRT - Standard analog CRT
2 : TV1 - TV Output 1
3 : EFP1 - DVI Flat Panel 1
4 : LFP - Local Flat Panel (Internal LVDS display)
5 : TV2 - TV Output 2
6 : EFP2 - DVI Flat Panel 2

The values above are an example of the typical displays and corresponding order used by a system BIOS. However, this may vary depending on how your system BIOS has implemented the displays and the Intel 5F interrupt functions.

The value in each position in the setting should be the associated port number. Using the typical settings above, if you want to associate CRT in the system BIOS with the internal CRT (port 5) and LFP in the system BIOS with internal LVDS (port 4) in the VBIOS, set COMMON_TO_PORT to be 500400.

Warning: This feature must be compatible with the system BIOS. If the system BIOS does not properly implement the Intel 5F functions, then using the COMMON_TO_PORT feature could cause unpredictable results with the displays. If you are unsure, set COMMON_TO_PORT to all zeros (000000) to disable this feature.

Note: The displaydetect parameter must be set to Enabled in order for the COMMON_TO_PORT values to be used.

4.3.2.2 post_display_msg

This setting is a binary setting that enables (1) or disables (0) post messages to the display.

4.3.2.3 OEM Vendor Strings

The following settings are string values that allow you to set the values that are returned from the Intel 4F interrupt functions.

- oem_string
- oem_vendor_name
- oem_product_name
- oem_product_rev
4.3.2.4 Default Mode Settings

These settings establish the default VGA or VESA mode to use for the primary (0) and secondary (1) displays. The values should be set to a valid standard VGA or VESA mode (in hexadecimal format, for example, 0x117). Note that a VGA mode can only be set on one display and a second display is disabled unless the DisplayConfig parameter is set to twin or clone mode.

default_mode_0
default_mode_1

4.3.2.5 Default Refresh Settings

These settings allow you to specify which refresh rate is used for certain VESA modes on the primary and secondary displays. For example, mode 0x117 specifies refresh rates of 60 Hz, 75 Hz, and 85 Hz. This setting allows use to specify which of those three rates to use (specified in decimal, e.g., default_refresh_0=60).

default_refresh_0
default_refresh_1

4.3.2.6 default_vga_height

This setting allows you to specify which resolution is used for certain VGA modes. Because only one VGA mode can be supported on both displays, this setting applies to the primary display mode (default_mode_0). For example, mode 3 specifies three possible resolutions: 640x200, 640x350, and 720x400. In this example, setting default_vga_height=350 indicates the resolution 640x350.

4.3.3 Building the VBIOS

CED is used to build the VBIOS. The following steps and screenshots outline a typical CED VBIOS build procedure.

1. Define your configuration via CED, being sure to complete the Video BIOS Configuration Page.
2. When you define the package you are building, be sure to select “Video BIOS” as “Target OS”.

3. Generate the installation. The following may display:

"Watcom® must be present to compile VBIOS. Please go to http://www.openwatcom.com and download version 1.7a or higher. Restart CED after Watcom® has been installed."
4. Generated files should now be in your CED Installation folder.
4.4 **VBIOS, Driver Compatibility, and Data Dependencies**

The Intel Embedded Graphics Drivers do not depend on any data from the VBIOS, and will either use driver settings or select default values for the attached displays. This allows the driver to properly operate with incompatible BIOS or BIOS replacements.

The Intel Embedded Graphics Drivers will retrieve settings, such as panel ID and other display settings from the Embedded VBIOS. The Embedded VBIOS allows for configuration of display timings that can also be used for the Intel Embedded Graphics Drivers.

4.5 **VESAs and VGA Video Modes**

The VBIOS supports many VESA and standard VGA modes. See Table 27 and Table 28 for the VGA and VESA modes and vertical refresh rates that are supported by the VBIOS.

Note: Although IBM labeled certain EGA modes with a (*) suffix and the VGA modes with a (+) suffix (such as mode 3, 3* and 3+), the VGA modes are so common that this document does not use the (+) suffix to refer to them.

The actual availability of any particular mode depends on the capabilities of the display device, the amount of memory installed, and other system parameters.
<table>
<thead>
<tr>
<th>Video Mode</th>
<th>Pixel Resolution</th>
<th>Color Depth (bpp)</th>
<th>Mode Type</th>
<th>Display Adapter</th>
<th>Font Size</th>
<th>Character Resolution</th>
<th>Dot Clock (MHz)</th>
<th>Horiz. Freq. (KHz)</th>
<th>Vert Freq (Hz)</th>
<th>Video Memory (KBytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>320 x 200</td>
<td>16 (gray)</td>
<td>Text</td>
<td>CGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>320 x 350</td>
<td>16 (gray)</td>
<td>EGA</td>
<td>8 x 14</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>360 x 400</td>
<td>16 (4 bpp)</td>
<td>VGA</td>
<td>9 x 16</td>
<td>40 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>01h</td>
<td>320 x 200</td>
<td>16 (4 bpp)</td>
<td>Text</td>
<td>CGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>320 x 350</td>
<td>16 (4 bpp)</td>
<td>EGA</td>
<td>8 x 14</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>360 x 400</td>
<td>16 (4 bpp)</td>
<td>VGA</td>
<td>9 x 16</td>
<td>40 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>02h</td>
<td>640 x 200</td>
<td>16 (gray)</td>
<td>Text</td>
<td>CGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>640 x 350</td>
<td>16 (gray)</td>
<td>EGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>720 x 400</td>
<td>16 (4 bpp)</td>
<td>VGA</td>
<td>9 x 16</td>
<td>80 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>03h</td>
<td>640 x 200</td>
<td>16 (4 bpp)</td>
<td>Text</td>
<td>CGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>640 x 350</td>
<td>16 (4 bpp)</td>
<td>EGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>720 x 400</td>
<td>16 (4 bpp)</td>
<td>VGA</td>
<td>9 x 16</td>
<td>80 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>04h</td>
<td>320 x 200</td>
<td>4</td>
<td>Graph</td>
<td>All</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>05h</td>
<td>320 x 200</td>
<td>4 (gray)</td>
<td>Graph</td>
<td>CGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>320 x 200</td>
<td>4 (gray)</td>
<td>EGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>320 x 200</td>
<td>4</td>
<td>VGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>06h</td>
<td>640 x 200</td>
<td>2</td>
<td>Graph</td>
<td>All</td>
<td>8 x 8</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>07h</td>
<td>720 x 350</td>
<td>Mono</td>
<td>Text</td>
<td>MDA</td>
<td>9 x 14</td>
<td>80 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>720 x 350</td>
<td>Mono</td>
<td>EGA</td>
<td>9 x 14</td>
<td>80 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>720 x 400</td>
<td>Mono</td>
<td>VGA</td>
<td>9 x 16</td>
<td>80 x 25</td>
<td>28</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>08h-0Ch</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0Dh</td>
<td>320 x 200</td>
<td>16 (4 bpp)</td>
<td>Graph</td>
<td>E/VGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>0EH</td>
<td>640 x 200</td>
<td>16 (4 bpp)</td>
<td>Graph</td>
<td>E/VGA</td>
<td>8 x 8</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>0Fh</td>
<td>640 x 350</td>
<td>Mono</td>
<td>Graph</td>
<td>E/VGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>10h</td>
<td>640 x 350</td>
<td>16 (4 bpp)</td>
<td>Graph</td>
<td>E/VGA</td>
<td>8 x 14</td>
<td>80 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
<tr>
<td>11h</td>
<td>640 x 480</td>
<td>2 (4 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>8 x 16</td>
<td>80 x 30</td>
<td>25</td>
<td>31.5</td>
<td>60</td>
<td>256</td>
</tr>
<tr>
<td>12h</td>
<td>640 x 480</td>
<td>16 (4 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>8 x 16</td>
<td>80 x 30</td>
<td>25</td>
<td>31.5</td>
<td>60</td>
<td>256</td>
</tr>
<tr>
<td>13h</td>
<td>320 x 200</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>8 x 8</td>
<td>40 x 25</td>
<td>25</td>
<td>31.5</td>
<td>70</td>
<td>256</td>
</tr>
</tbody>
</table>
The following table lists the supported VGA display modes. The actual availability of any particular mode depends on the capabilities of the display device, the amount of memory installed, and other system parameters.

Table 28. VESA Modes Supported by Video BIOS (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Video Mode</th>
<th>Pixel Resolution</th>
<th>Colors (bpp)</th>
<th>Mode Type</th>
<th>Display Adapter</th>
<th>Vertical Frequency (Hz)</th>
<th>Video Memory (Mbytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101h</td>
<td>640 x 480</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>60</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>75</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>85</td>
<td>0.5</td>
</tr>
<tr>
<td>103h</td>
<td>800 x 600</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>105h</td>
<td>1024 x 768</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>107h</td>
<td>1280 x 1024</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1280 x 1024</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1280 x 1024</td>
<td>256 (8 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>111h</td>
<td>640 x 480</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>114h</td>
<td>800 x 600</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>117h</td>
<td>1024 x 768</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>85</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 28. **VESA Modes Supported by Video BIOS** (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Video Mode</th>
<th>Pixel Resolution</th>
<th>Colors (bpp)</th>
<th>Mode Type</th>
<th>Display Adapter</th>
<th>Vertical Frequency (Hz)</th>
<th>Video Memory (Mbytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11Ah</td>
<td>1280 x 1024</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>11Ah</td>
<td>1280 x 1024</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>11Ah</td>
<td>1280 x 1024</td>
<td>64K (16 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>112</td>
<td>640 x 480</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>640 x 480</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>640 x 480</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>VGA</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>115</td>
<td>800 x 600</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>115</td>
<td>800 x 600</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>115</td>
<td>800 x 600</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SVGA</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>118</td>
<td>1024 x 768</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>118</td>
<td>1024 x 768</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>118</td>
<td>1024 x 768</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>XVGA</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>11B</td>
<td>1280 x 1024</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>11B</td>
<td>1280 x 1024</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>75</td>
<td>8</td>
</tr>
<tr>
<td>11B</td>
<td>1280 x 1024</td>
<td>16M (32 bpp)</td>
<td>Graph</td>
<td>SXGA</td>
<td>85</td>
<td>8</td>
</tr>
</tbody>
</table>
5.0 Configuring and Installing Microsoft Windows Drivers

5.1 Editing the Microsoft Windows INF File

This section describes the driver-level information (iegd.inf) for the Microsoft Windows* operating system, which includes the following:

- Microsoft Windows Embedded Standard 2009*
- Microsoft Windows XP* SP3
- Microsoft Windows XP Professional* SP3
- Microsoft Windows XP Embedded* SP3
- Microsoft WEPOS* SP3

Note: Configuration and Installation information for the Microsoft Windows CE operating system is described in Chapter 6.0, "Configuring and Building the IEGD for Microsoft Windows CE* Systems".

5.2 Configuration Information

5.2.1 Universal INF Configuration

Multiple display configurations can be specified in a single INF file. Each configuration is uniquely identified by the ConfigId parameter.

The driver reads the PanelId from the System BIOS during initialization and uses the configuration whose ConfigId matches the PanelId. If the System BIOS does not set a valid PanelId (for example, panelId = 0), the driver reads a configuration using ConfigId = 1. (A ConfigId value of 0 is invalid.)

Note: When setting up a multiple display configuration to be used with the PanelID, do not set a default configuration. To have no default configuration, select None from the Default Configuration drop-down menu on the IEGD Package Page. See Section 3.6, "Creating a New Package" on page 57 for details.

You can override the default behavior by specifying a ConfigId parameter as follows:

```
HKR,, ConfigId, %REG_DWORD%, %DEFAULT_CONFIG_ID%
```

In this case, the driver ignores the PanelId returned by the System BIOS. Instead, the IEGD uses the configuration information using the specified ConfigId.

1. These versions of the drivers are not WHQL (Windows Hardware Quality Labs) certified.
5.2.2 INF File Backward Compatibility

The current version of the IEGD uses the new INF file format. You cannot use the new INF file with pre-5.0 versions of the IEGD. However, you can still use pre-5.0 INF file formats with the current version of the IEGD.

5.2.2.1 INF File Backward Compatibility with IEGD Version 4.0

Version 4.0 of the IEGD provides backward compatibility with pre-4.0 versions of the INF file. This support is implemented through the PcfVersion key in the INF file, shown below:

```
HKR,, PcfVersion, %REG_DWORD%, 0x0400
```

The IEGD uses this key to determine which version of the .inf file it is interpreting. When this key is present in the .inf file and its value is 0x0400, the driver reads it as a 4.0 .inf file. If this key is omitted from the .inf file or if its value is less than 0x0400, the driver reads the .inf file as a pre-4.0 file.

Note the following rules:

- If you use a pre-4.0 version of the .inf file with version 4.0 of the IEGD, the driver translates pre-4.0 configuration parameters to 4.0 parameters.
- You cannot use 4.0 parameters in a pre-4.0 .inf file. If you try, the driver ignores them.
- You cannot use pre-4.0 parameters in a 4.0 .inf file. If you try, the driver ignores them.

For example, the usestdtimings parameter is a pre-4.0 parameter. If it is specified in a 4.0 INF file, the driver ignores it. Similarly, if you attempt to add the edid_avail and edid_non_avail parameters to a pre-4.0 .inf file (that is, an .inf file where the PcfVersion key is not present), they are ignored by the driver.

The PcfVersion key is generated automatically by the CED utility and is placed in the [iegd_SoftwareDeviceSettings] section of the .inf file. The default iegd.inf file already contains the PcfVersion key. Please see Appendix A, "Example INF File" to view a sample .inf file.

5.2.3 Dual Panel Configuration

Below are the settings required to set the INF file to enable extended display configurations. Typically, these settings are output from the CED utility. However, the INF file may also be edited directly. See Table 29 for a description of these settings.

```
HKR, Config\DEFAULT_CONFIG_ID%\General, DisplayConfig, %REG_DWORD%, 8
HKR, Config\DEFAULT_CONFIG_ID%\General, PortOrder, %REG_SZ%, "52000"
```
5.2.4 Chipset Dual Display Example

The table below presents the dual display example for an Intel chipset.

Table 29. Example of Chipset Dual Display Parameter Setting

<table>
<thead>
<tr>
<th>Dual Display Combination</th>
<th>Port Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT + Internal LVDS</td>
<td>"54000"</td>
</tr>
<tr>
<td>CRT + sDVOB</td>
<td>"52000"</td>
</tr>
<tr>
<td>CRT + sDVOC</td>
<td>"53000"</td>
</tr>
<tr>
<td>Internal LVDS + CRT</td>
<td>"45000"</td>
</tr>
<tr>
<td>Internal LVDS + sDVOB</td>
<td>"42000"</td>
</tr>
<tr>
<td>Internal LVDS + sDVOC</td>
<td>"43000"</td>
</tr>
<tr>
<td>sDVOB + CRT</td>
<td>"25000"</td>
</tr>
<tr>
<td>sDVOB + Internal LVDS</td>
<td>"24000"</td>
</tr>
<tr>
<td>sDVOB + sDVOC</td>
<td>"23000"</td>
</tr>
<tr>
<td>sDVOC + CRT</td>
<td>"35000"</td>
</tr>
<tr>
<td>sDVOC + Internal LVDS</td>
<td>"34000"</td>
</tr>
<tr>
<td>sDVOC + sDVOB</td>
<td>"32000"</td>
</tr>
</tbody>
</table>

5.2.5 Creating Registry Settings for Graphics Driver INF File

The driver settings are configured using CED. It generates the following output, which is then inserted into the graphics driver INF file before driver installation. CED simply translates the configuration options to the INF file. See Table 24, "Parameter Configuration Format" on page 71 for details on the specific settings and values, which also apply to the settings and values of the INF file. The values of the INF file may also be directly modified. See the example below for syntax and usage. Also, see Appendix A, "Example INF File" for a complete sample INF file.

HKR,, PcfVersion, %REG_DWORD%, 0x0700
HKR,, No_D3D, %REG_DWORD%, 0
HKR,, PortDrivers, %REG_SZ%, "lvds"

;--
[iegd_SoftwareDeviceSettings_nap]
HKR,, InstalledDisplayDrivers, %REG_MULTI_SZ%, iegddis
HKR,, MultiFunctionSupported, %REG_MULTI_SZ%, 1
HKR,, VgaCompatible, %REG_DWORD%, 0
HKR,, PcfVersion, %REG_DWORD%, 0x0700

HKR,, No_D3D, %REG_DWORD%, 0
HKR,, PortDrivers, %REG_SZ%, "analog sdvo lvds tv"

;--
[iegd_SoftwareDeviceSettings_gn4]
HKR,, InstalledDisplayDrivers, %REG_MULTI_SZ%, iegddis
HKR,, MultiFunctionSupported, %REG_MULTI_SZ%, 1
HKR,, VgaCompatible, %REG_DWORD%, 0
HKR,, PcfVersion, %REG_DWORD%, 0x0700

HKR,, No_D3D, %REG_DWORD%, 0
HKR,, PortDrivers, %REG_SZ%, "analog sdvo lvds hdmi"

;--

[iegd_SoftwareDeviceSettings_plb]
HKR,, InstalledDisplayDrivers, %REG_MULTI_SZ%, iegddis
HKR,, MultiFunctionSupported, %REG_MULTI_SZ%, 1
HKR,, VgaCompatible, %REG_DWORD%, 0
HKR, PcfVersion, %REG_DWORD%, 0x0700
HKR,, No_D3D, %REG_DWORD%, 0
HKR,, PortDrivers, %REG_SZ%, "sdvo lvds"
HKR, All\1\General, DxvaOptions, %REG_DWORD%, 1

;===
[Strings]
;--
; Localizable Strings
;--
Intel="Intel Corporation"
DiskDesc="Embedded Installation"
i915GD0="915G/915GV/910GL Embedded Graphics Controller Function 0"
i915GD1="915G/915GV/910GL Embedded Graphics Controller Function 1"
i915AL0="915G/915GMS/910GML Embedded Graphics Controller Function 0"
i915AL1="915G/915GMS/910GML Embedded Graphics Controller Function 1"
i945LP0="945G Embedded Graphics Controller Function 0"
i945LP1="945G Embedded Graphics Controller Function 1"
i945CT0="945GM Embedded Graphics Controller Function 0"
i945CT1="945GM Embedded Graphics Controller Function 1"
i965BW0="965G Embedded Graphics Controller Function 0"
i965BW1="965G Embedded Graphics Controller Function 1"
iG9650="G965 Embedded Graphics Controller Function 0"
iG9651="G965 Embedded Graphics Controller Function 1"
iQ9650="Q963/Q965 Embedded Graphics Controller Function 0"
iQ9651="Q963/Q965 Embedded Graphics Controller Function 1"
i946GZ0="946GZ Embedded Graphics Controller Function 0"
i946GZ1="946GZ Embedded Graphics Controller Function 1"
i965GM0="GM965 Embedded Graphics Controller Function 0"
i965GM1="GM965 Embedded Graphics Controller Function 1"
i965GME0="GLE960/GME965 Embedded Graphics Chipset Function 0"
i965GME1="GLE960/GME965 Embedded Graphics Chipset Function 1"
iGM450="GM45/GS45/GL40 Embedded Graphics Chipset Function 0"
iGM451="GM45/GS45/GL40 Embedded Graphics Chipset Function 1"
iG450="G45 Embedded Graphics Chipset Function 0"
iG451="G45 Embedded Graphics Chipset Function 1"
iG410="G41 Embedded Graphics Chipset Function 0"
iG411="G41 Embedded Graphics Chipset Function 1"
iELK0="Q45 Embedded Graphics Chipset Function 0"
iELK1="Q45 Embedded Graphics Chipset Function 1"
iQ450="Q45 Embedded Graphics Chipset Function 0"
iQ451="Q45 Embedded Graphics Chipset Function 1"
i9000G0="US15 Embedded Graphics Chipset Function 0"
i945WB0="945GME/945GSE Embedded Graphics Chipset Function 0"
i35BL0="Q35 Embedded Graphics Chipset Function 0"
i35BL1="Q35 Embedded Graphics Chipset Function 1"
i35BLA0="Q35 Embedded Graphics Chipset Function 0"
i35BLA1="Q35 Embedded Graphics Chipset Function 1"

; Non Localizable Strings
;--
SERVICE_BOOT_START = 0x0
SERVICE_SYSTEM_START = 0x1
SERVICE_AUTO_START = 0x2
SERVICE_DEMAND_START = 0x3
SERVICE_DISABLED = 0x4
Configuring and Installing Microsoft Windows Drivers

5.2.6 Dynamic Port Driver Configuration

The IEGD supports many third-party digital transmitters connected to the sDVO ports of the GMCH though device drivers called port drivers. These port drivers are dynamically loaded at startup. The driver configuration can be modified to add or remove availability of specific port drivers.

This section describes the portions of the iegd.inf file that can be modified to either add or remove a port driver for the Microsoft Windows version of the Intel® Embedded Graphics Drivers.

5.2.6.1 iegd.PortDrvs_xxx

The first step in either adding or removing a port driver is to identify the family of the chipset you are using. 915 and 945 are Napa (nap), and 965 is Gen 4 (gn4). Next locate the appropriate [iegd.PortDrvs_xxx] section for your graphics family. Below are the default settings for the blocks of associated port drivers for a particular graphics chipset family:

[iegd.PortDrvs_nap]
sdio.sys
lvds.sys
tv.sys
analog.sys

[iegd.PortDrvs_gn4]
sdio.sys
lvds.sys
analog.sys
hdmi.sys

[iegd.PortDrvs_plb]
sdio.sys
lvds.sys

To remove one or more port drivers, delete the associated line from the iegd.PortDrvs_xxx block. To add a port driver, add the associated line into the appropriate iegd.PortDrvs_xxx block. For example, to add a new port driver for a device named "NewPD", add the following line to the iegd.PortDrvs_alm block:

NewPD.sys
5.2.6.2 SourceDisksFiles

The next step to either add or remove a port driver is to identify the specific port driver file names in the SourceDisksFiles blocks. The default settings are as follows:

```
[SourceDisksFiles]
iegdmini.sys = 1
ieiddd.dll = 1
iei3dg3.dll = 1
iei3dg4.dll = 1
lvds.sys = 1
sdvo.sys = 1
tv.sys = 1
hdmv.sys = 1
sdvo.vp = 1
hdmv.vp = 1
analog.vp = 1
lvds.vp = 1
tv.vp = 1
iegdckey.vp = 1
iegdmsys.vp = 1
iegdcaqt.cpa = 1
iegdcaqt.vp = 1
iei3dga.dll = 1
iegedlg1.dll = 1
libGLES_CM.dll = 1
libGLESv2.dll = 1
analog.sys = 1
```

To remove a port driver, delete the associated line in the SourceDisksFiles block. To add a port driver, add the associated line to the block. For example, to add a port driver for a device whose driver is named NewPD.sys, add the following line:

```
NewPD.sys = 1
```

5.2.6.3 PortDrivers Registry Key

The next step is to modify the registry key in the appropriate [iegd_SoftwareDeviceSettings_xxx] section that defines the list of available port drivers. Below are the default values of this registry key in the iegd.inf file:

```
For the [iegd_SoftwareDeviceSettings_nap] block:
HKR,, PortDrivers, %REG_SZ%, "sdvo lvds tv"

For the [iegd_SoftwareDeviceSettings_gn4] block:
HKR,, PortDrivers, %REG_SZ%, "sdvo lvds"
```

Remove or add port driver names as appropriate to the list of port drivers specified within the quoted string. For example, to add support for a new port driver named "NewPD", the registry key would be defined as follows:

```
HKR,, PortDrivers, %REG_SZ%, "lvds NewPD"
```
5.2.7 Creating an .sld file for Microsoft Windows XP Embedded Systems

Microsoft Windows XP Embedded* operating systems require the use of an .sld (system level definitions) file. The following steps detail how to create such a file for IEGD from your custom iegd.inf file that you created using CED.

1. Run Component Designer.
2. In the File menu, select Import.
3. In the Choose File for Import dialog, select Setup Information files (*.inf) in the File of type drop-down list.
4. Select iegd.inf from installation directory.
5. In the Inf Processing Options dialog, select Automatic in the Parsing Options dialog and click OK.
6. Click Start in the Import File dialog box. Close the dialog on completion. There should not be any errors.
7. If there are no errors, Save the .sld file.
8. Run Component Database Manager and import the .sld file created above.

Note: Multiple versions will be created.
9. To move the binaries, copy the IEGD/driver files into the root repository:
 \Windows Embedded Data\Repository
10. In Target Designer, all the IEGD drivers are found under Hardware\Devices\Display Adapters and can be selected by dragging and dropping into your build.

5.2.8 Changing Default Display Mode

After installing the Intel® Embedded Graphics Drivers, Microsoft Windows selects a default display mode for the initial startup of the system. This is a 800 x 600 resolution in 4-bit, 16-bit, or even 32-bit color mode.

The display modes are set through CED; however if you want to change the settings using the registry keys, you may add the following lines to the [iegd_SoftwareDeviceSettings] section of the iegd.inf file:

```plaintext
HKR,, DefaultSettings.XResolution, %REG_DWORD%, 1024
HKR,, DefaultSettings.YResolution, %REG_DWORD%, 768
HKR,, DefaultSettings.BitsPerPel, %REG_DWORD%, 32
HKR,, DefaultSettings.VRefresh, %REG_DWORD%, 60
```

The example above makes the default resolution 1024 x 768, with a 32-bit color depth and a refresh rate of 60 MHz.

5.3 Installing the IEGD on Microsoft Windows

You can install and uninstall the IEGD on a Microsoft Windows system by using the setup.exe program located in the Windows\Utilities folder. The following procedure shows how to install the IEGD. Section 5.4, “Uninstalling the Current Version of the Driver” on page 112 provides instructions for uninstalling the current version of the IEGD.
5.3.1 Silent Installation

IEGD supports silent installation through an option in setup.exe. This can be achieved through command line installation with parameter "/s" (case insensitive), for example setup.exe /s at the command prompt. When this option is used, the installation does not display any messages or splash screen except the warning messages about IEGD not being WHQL compliant. After the silent installation, a message box prompts the user to reboot the system.

Note: To disable the Windows WHQL compliance warning messages, use the Windows System Properties -> Hardware -> Driver Signing -> Ignore option.

To allow automatic reboot without the reboot dialog box stopping the installation, use the option "/nr" following the setup.exe command, for example, setup.exe /nr. The end user will be responsible to do their own reboot.

Warning: If you have a previous version of the IEGD installed on your system, you must remove it using the uninstall driver (see Section 5.4 for instructions.). Do not use the current version of the IEGD Install program to uninstall previous versions of the driver. If you do, unpredictable results may occur. You can use this program only to uninstall the driver from the current version. Each version of the driver has its own version of the installer/uninstaller utility.

1. Double-click the setup.exe icon in the Utilities folder. The following dialog box appears.

 ![Setup Dialog Box]

 - Installs driver and application files
 - Uninstalls driver and application files

 Next

2. To install the driver, make sure that Installs driver and application files is selected, and then click Next. The accept license screen appears.
3. Click **I agree**, and then click **Install**. The installation begins and shows a progress bar as follows:

Note: If you get an "unsigned driver" warning, disregard and click **Continue** to allow the installation to continue.

4. After the driver and application files have been copied, the system must be restarted to complete the installation. If you want the installation program to restart your computer, click **Yes**.
5.4 Uninstalling the Current Version of the Driver

You can use the setup.exe Microsoft Windows GUI program to remove the driver from your system. When you run the uninstaller program, it removes the following items from the system:

- The IEGD drivers
- The .inf and .pnf files from the windows\system32\inf folder.
- The DisplayPage.dll and qt-mt332.dll from the windows\system32 folder
- Data registry items by running regsvr32.exe with the uninstall option.

Warning: If you have a previous version of the IEGD installed on your system, you must remove it. Do not use the current version of the IEGD Install program to uninstall previous versions of the driver. If you do, unpredictable results may occur. You can use this program only to uninstall the driver from the current version. Each version of the driver has its own version of the installer/uninstaller utility.

1. Click the setup.exe icon located in the Utilities subfolder of the Windows folder.

2. In the dialog box, select Uninstalls driver and application files, and then click Next. The following prompt appears:

 ![Intel® Embedded Graphics Driver Setup](image)

 Do you really want to remove all the selected components?

 ![Yes No](image)

3. Click Yes to remove the driver. A progress bar displays and when the driver has been removed, the following screen appears.

 ![Intel® Embedded Graphics Driver Setup](image)

 Finished uninstalling...

4. To complete the uninstallation, you must restart your system. If you want to restart your system now, click Yes in the following dialog box.

 ![Intel® Embedded Graphics Driver Setup](image)

 You must restart your computer to complete un-installation. Do you want to restart now?

 ![Yes No](image)
5.5 **Run-Time Operation**

Resolution, refresh rate, and color bit depth can be changed after installation and reboot via a Microsoft Windows display property sheet. On Microsoft Windows XP, extended desktop can be enabled and disabled, along with swapping primary and secondary displays. Other operations such as enabling and disabling ports (display output), rotation, port configuration, and attribute control are accessible via the standard display driver escape protocol.

5.6 **Viewing and Changing the Driver Configuration from Microsoft Windows**

Note: IEGDGUI requires that the MS Sans Serif(8) font is installed in the system font folder for correct display.

You can change certain configuration attributes of the IEGD using the `iegdgui.exe` program located in the \Utilities folder. On Microsoft Windows XP systems, you can access the IEGD configuration on the display properties setting tab. This program launches the IEGD Configuration GUI that consists of the following four tabs:

- **Driver Info** — Contains the driver information.
- **Display Config** — Contains current display information and allows configuration of display configurations, display resolutions and bit depth for primary and secondary displays, flip, rotation, and enabling/disabling for a given port.
- **Display Attributes** — Contains the supported Port Driver (PD) attributes and allows configuration of PD attributes.
- **Color Correction** — Contains color-correction information for the framebuffer and overlay. Using this tab, you can change the framebuffer and overlay color settings.

To view or change the driver settings using the GUI interface, follow this procedure.

1. Double-click the `iegdgui.exe` icon in the Utilities folder. On Microsoft Windows XP systems, you can select Display from the control panel or right-click from the desktop and select Properties - Settings - Advanced - Driver info to show information about the driver.

To change display configuration, mode, and display setting, select **Display Config**.
2. Click the **Display Config** tab to show the current configuration.
3. In the Display Configuration section of the dialog, select the required display configuration in the Display Config drop-down list. This allows the user to choose between Single, Twin, Clone and Extended for all connected ports. A maximum of two ports per display configuration is currently allowed.

4. In the Primary Mode and Secondary Mode sections of the dialog, change resolution and bit depth of the primary and secondary displays via the Resolution and Bit Depth drop-down lists.

5. In the Display Settings section of the dialog, view and change the settings for a port, rotate and flip the display via the appropriate drop-down lists:
 - Port: Allows you to select the required port.
 - Port Status: Allows you to enable or disable the selected port.
 - Rotate: You can rotate the display 0, 90, 180, and 270 degrees.
 - Flip: Inverts the display horizontally.

Note: If you change any configuration settings in the Display Config dialog box, click Apply for the changes to take effect.
6. Click the **Display Attributes** tab to view and change the attributes for a port. The screen that appears depends upon the port drivers used.

Figure 30. Example Runtime Configuration GUI — Display Attributes Tab

The figure above shows the attributes that can be changed for the selected port in the **Port** drop-down list. You can change the Port Driver by selecting the appropriate one for your device. The attributes that appear on this tab depend upon the selected port driver. Please see Appendix B, "Port Driver Attributes," for a complete list of port driver attributes.

7. Click the **Color Correction** tab to view and change color corrections. **Figure 31** shows a sample Color Correction tab screen. Color Correction is available for both overlays and framebuffers.
Figure 31. Example Runtime Configuration GUI — Color Correction Tab

Table 30. Framebuffer Color Correction Values (applies to R, G, B color)
- Gamma: 0.6 to 6.0 (default value is 1)
- Brightness: -127 to 127 (default value is 0)
- Contrast: -127 to 127 (default value is 0)

Table 31. Overlay Color Correction Values (applies to ALL color)
- Gamma: 0.6 to 6.0 (default value is 1)
- Brightness: 0 to 200 (default value is 100)
- Contrast: 0 to 200 (default value is 100)
- Saturation: 0 to 200 (default value is 100)
The following sub-steps present an example color-correction procedure:

a. Select **Framebuffer** in the **Surface** section and select the appropriate port for the color correction to be applied to or select **Overlay** in the Surface section for color correction to be applied to the overlay.

b. Select the required color to be corrected in the **Color** section.

c. Select the required color attribute to be corrected in the **Gamma Correction** section.

d. Click **Restore Defaults** to restore the default values.

Note: If you make any changes to the color-correction settings, click **Apply** to have the changes take effect.

Note: The hardware does not support brightness, saturation, and contrast of the overlay and second overlay with RGB pixel format.
6.0 Configuring and Building the IEGD for Microsoft Windows CE* Systems

6.1 Overview

This section describes the driver-level information for Microsoft Windows CE* operating systems.

The Microsoft Windows CE drivers are configured and built from the options provided on the General Settings Page (see “Creating a New Configuration” on page 36) and the Microsoft Windows CE Options Page (see page 41). After you configure the IEGD for a Microsoft Windows CE system, package the IEGD and generate an installation. The CED produces an iegd.reg (see “Sample iegd.reg File” on page 138) file and a IEGD_10_3_1_WINCEXX.zip file (where XX is either 5_0 or 6_0) that you use to build an image for a Microsoft Windows CE system using the Microsoft Windows CE Platform Builder.

To build an IEGD image for a Microsoft Windows CE system, the following are the general steps. For specific instructions for the particular version of Windows CE that you are using, either 5.0 or 6.0, refer to the appropriate section.

1. Enter IEGD configuration settings using the CED. (Please see “Creating a Configuration in CED – Summary Steps” on page 30 and “Creating a New Package” on page 57.)

2. Package the configuration. (See “Creating a New Package” on page 57.)

3. Generate an installation using the Generate Installation option on the CED main window (see “Generating an Installation” on page 66). This produces an iegd.reg file and an IEGD_5_0_WINCEXX.zip file. The iegd.reg file contains registry entries and the IEGD_10_3_1_WINCEXX.zip file contains required driver files.

4. Integrate the iegd.reg file with the Microsoft Windows CE Platform Builder. Please see “Integrating IEGD with Microsoft Windows CE* Platform Builder” on page 120.

6.2 Microsoft Windows CE* Installation

The following sections describe how to install the IEGD on the Microsoft Windows CE* 5.0 operating system. For instructions on installing Windows CE 6.0, see Section 6.2.3, “Microsoft Windows CE* 6.0 Installation” on page 122.
6.2.1 Prerequisites

The development system should have the following software installed:

- Microsoft Windows XP* Professional, SP3
- Platform Builder for Microsoft Windows CE* 5.0 or 6.0 (with latest service packs)

The target system must contain one of the following Intel chipsets:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
- Intel® 915GV Express chipset
- Mobile Intel® 915GME Express chipset
- Mobile Intel® 910GMLE Express chipset

The target system must contain a minimum of 64 Mbytes of RAM.

6.2.2 Integrating IEGD with Microsoft Windows CE* Platform Builder

The integration/installation of the driver binaries depends upon the requirements of the target device; while ddi_iegd.dll is required, port drivers may be optionally included.

Note: Windows CE* 6.0 does not employ the catalog file mentioned below. For Windows CE 5.0, to integrate the driver binaries into the Platform Builder, the catalog file included with the release should first be imported to the Platform Builder’s catalog (for details about how this is done, see Section 6.2.2.1). After the catalog file is imported, find “Intel Embedded Graphics Driver” under Third Party -> Device Drivers -> Display and drag-and-drop it into the BSP.

In order for the Platform Builder to use IEGD, the iegd.reg file included with the release has to be properly included into the BSP. For Windows CE 5.0, this means adding the following lines into the platform.reg file. Note that you must specify the correct path to the iegd.reg file.
Configuring and Building the IEGD for Microsoft Windows CE* Systems

;***
;* IEGD Section for Windows CE 5.0 Platform Builder*
;***
IF BSP_DISPLAY_IEGD

; @CESYSGEN IF CE_MODULES_PCI

; GWES will be able to auto-detect the display adapter if a candidate value
; points to the adapter's PCI instance. Values from Candidate1 to Candidate32
; (decimal) are possible; GWES will examine them sequentially until it finds
; a match.
[HKEY_LOCAL_MACHINE\System\GDI\DisplayCandidates]
 "Candidate6"="Drivers\Display\Intel"

[${(PCI_BUS_ROOT)}\Template\IEGD]
"DisplayDll"="ddi_iegd.dll"
"Class"=dword:03
"SubClass"=dword:00
"ProgIF"=dword:00

"VendorID"=multi_sz:"8086", "8086", "8086", "8086", "8086", "8086", "8086", "8086",
 "8086", "8086", "8086", "8086", "8086", "8086", "8086", "8086",
 "8086", "8086", "8086", "8086", "8086", "8086", "8086", "8086",
 "8086", "8086", "8086", "8086", "8086", "8086", "8086", "8086",
"DeviceID"=multi_sz:"3582", "2572", "2562", "357B", "3577", "1132", "7125", "7123",
 "2983", "29A2", "29A3", "2992", "2993", "2972", "2973", "2A12", "8108"

; include the path to the iegd.reg file in the release package
#include <specify_path_here>\iegd.reg

; @CESYSGEN ENDIF CE_MODULES_PCI
ENDIF ; BSP_DISPLAY_IEGD

Finally, to include the actual driver binaries into the OS image, you must
reference them in the BSP's BIB file by appending the path to ddi_iegd.dll and the
port drivers into platform.bib, as shown below.

Figure 32. Sample FILES Block from platform.bib File

<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
<th>Memory Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddi_iegd.dll</td>
<td><specify_path_here>\ddi_iegd.dll</td>
<td>NK</td>
</tr>
</tbody>
</table>

March 2010
Document Number: 274041-029US

Intel® Embedded Graphics Drivers, EFI Video Driver, and Video BIOS
User's Guide
6.2.2.1 Catalog Feature File

For Windows CE*, IEGD’s Catalog Feature File, \textit{iegd.cec}, is provided in the release package. To import IEGD into the workspace’s catalog, complete the following steps:

1. From the File menu, select \textit{Manage Catalog Features}.
2. Choose \textit{Import}.
3. In the \textit{Import Catalog Features} dialog box, select the .\textit{cec} file, and then click \textit{Open}.
4. From the \textit{View} menu, select \textit{Catalog} to display the Catalog.

6.2.3 Microsoft Windows CE* 6.0 Installation

6.2.3.1 Prerequisites

The development system should have the following software installed:

- Windows CE* 6.0 R2
- Latest Monthly Updates from the Microsoft Web site dated only until June 2009
- Intel Embedded Graphics Driver (IEGD) v8.0 or later

6.2.3.2 CED Requirements

1. Follow instructions in sections Section 3.5, “Creating a New Configuration” on page 36.
2. Create a folder on the Platform Builder machine to hold IEGD-specific files.
3. Move your IEGD installation ZIP file the folder created in step 2 and extract the ZIP file contents.
 It is recommended that you extract the files and keep them in one source directory for purposes of this build and then follow instructions in Section 6.2.3.3.

6.2.3.3 Platform Builder Requirements

You must configure your Platform Builder parameters specific to the options that the system and image require, for example, options for the operating system. A Board Support Package (BSP) is also required however, configuration steps for the BSP are beyond the scope of this procedure. An Intel® BSP can be used or the CEPC BSP that is included Platform Builder.
6.2.3.3.1 Platform.reg Changes

1. From the Properties page of Platform Builder for your project, go to the Build Options page and check the box for “Runtime image can be larger than 32MB”.
2. Edit your Platform.reg file as shown in the example below. The bold text shows the content that needs to be added.

Example Platform.reg snippet:
```
; @CESYSGEN IF CE_MODULES_DISPLAY
IF BSP_NODISPLAY !
[HKEY_LOCAL_MACHINE\System\GDI\DisplayCandidates]
  "Candidate6"="Drivers\Display\Intel"
[$(PCI_BUS_ROOT)\Template\IEGD]
  "DisplayDll"="ddi_iegd.dll"
  "Class"=dword:03
  "SubClass"=dword:00
  "ProgIF"=dword:00
#include "C:\folder location\iegd.reg"
```

6.2.3.3.2 Platform.bib Changes

1. Edit your Platform.bib file.
2. At the bottom of the Platform.bib file add the parameters needed using this format:

```
<iegd file> c:\folder location\file name> NK SHK
```

The examples below may include some that are not needed or more may need to be added.

```
ddi_iegd.dll c:\folder location\ddi_iegd.dll NK SHK
analog.dll c:\folder location\analog.dll NK SHK
iegd3dg3.dll c:\folder location\iegd3dg3.dll NK SHK
iegd3dg4.dll c:\folder location\iegd3dg4.dll NK SHK
iegd3dga.dll c:\folder location\iegd3dga.dll NK SHK
sdvo.dll c:\folder location\sdvo.dll NK SHK
lvds.dll c:\folder location\lvds.dll NK SHK
hdmi.dll c:\folder location\hdmi.dll NK SHK
tv.dll c:\folder location\tv.dll NK SHK
libGLES_GM.dll c:\folder location\libGLES_GM.dll NK SHK
libGLESV2.dll c:\folder location\libGLESV2.dll NK SHK
libOpenGL.dll c:\folder location\libOpenGL.dll NK SHK
isr_iegd.dll c:\folder location\isr_iegd.dll NK SHK
```
6.2.4 Integrating IEGD DirectX DirectShow Codecs for Intel® System Controller Hub US15W

6.2.4.1 IEGD DirectShow Codecs Overview

Microsoft's DirectX DirectShow infrastructure provides a standardized interface for middleware audio-video codec software libraries to expose features for accelerating video and audio processing. This infrastructure does not differentiate between hardware and software acceleration but the middleware codec libraries have the choice of employing either methods. For the purpose of enabling hardware accelerated video decode on Windows CE 6.0, the IEGD Windows CE DirectShow filters are provided in the form of middleware codec libraries (DLLs) that will interface with the IEGD Windows CE driver to operate.

The IEGD DirectShow package includes the following Windows CE 6.0 codecs that are DirectShow transform filters in .dll binary form:
- mpeg2_dec_filter.dll
- mpeg2_spl_filter.dll
- mpeg4_dec_filter.dll
- mpeg4_spl_filter.dll
- h264_dec_filter.dll
- aac_dec_filter.dll
- ac3_dec_filter.dll

The codecs with "spl" are splitter codecs. The aac_dec_filter and ac3_dec_filter are AAC and AC3 audio decoder codecs respectively. The rest are video decode codecs.

Notes: IEGD DirectShow codecs are supported only on the Windows CE 6.0 operating system.

IEGD splitter filters can connect with most source filters but have been verified to connect only with IEGD transform filters on its downstream pins. The same case is true with respect to IEGD transform filter connection with upstream splitter filters.

Important: IEGD audio and video codec filters work only with IEGD splitter filters. If these codecs are installed properly into the Windows CE OS image (via registry changes), the CEPlayer.exe is able to load and use IEGD codecs without any help.

6.2.4.2 Installing IEGD DirectShow Codecs

Prerequisites:
- At least 512 Mbytes RAM for the target system. The hardware video decode performance depends on what other processes are being run on the system.
- The target system must contain chipset US15W that supports the video engine.
- Include IEGD Graphics Driver in the Windows CE 6.0 OS image per the appropriate installation instructions in Section 6.2.2 and Section 6.2.3.

The latest EVALUATION ONLY versions of the IEGD DirectShow codecs are available on the Intel Premier Support site in the IEGD product area (premier.intel.com).
After you have the codec package, follow these steps to set up the IEGD DirectShow codecs:

1. Ensure that the IEGD DirectShow codecs are included in the Windows CE OS image. You do this by including it into either the platform.bib or project.bib file.

2. Ensure that the iegd_filters.reg file is included into the image registry. You do this by including it into either the platform.reg or project.reg file.

3. Set the backbuffers required for IEGD Codecs on the Microsoft video renderer filter for smoother performance by changing the following registry key:

 \[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Video Renderer]\n
 "MaxBackBuffers"=dword:X

 where X is the current value that you need to change to equal to or greater than 5.

4. For smoother playback and lower CPU utilization, ensure you use interrupts with IEGD if available. See Section 6.2.3.3.2, "Platform.bib Changes" on page 123 for details.

6.3 Microsoft Windows CE* Configuration

The following sections describe how to configure the IEGD on the Microsoft Windows CE* operating system. All the IEGD-specific registry keys are located within the path

\[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\]

All keys use one of the following syntax:

"<keyname>"=dword:<value>,

or

"<keyname>" = <value>

where <value> in the second case is a string in double quotes.

Note: Unless specified otherwise, the “value” field is in hex format.

The iegd.reg file contains display configuration registry entries for the IEGD. A sample iegd.reg file is provided along with the driver package. The content of this file may be included through the “#include” directive in platform.reg (see Section 6.2.2), or it may be copied into the proper section in platform.reg.

6.3.1 Basic Driver Configuration

This section discusses basic driver configuration keys located in

\[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\General\]

The table below lists the keys in the “Intel” folder.
6.3.1.1 Graphics Memory Configuration

The Intel Embedded Graphics Suite (IEGS = VBIOS + Graphics driver) provides the ability to dedicate additional memory for graphics functions on the Microsoft Windows CE* platform. This is known as reserved memory. The amount of reserved memory is selected by firmware. The reservation size is passed to the graphics driver through a scratch register available on the GMCH. Reserved memory is useful in minimizing the amount of memory stolen from the OS for memory-limited, embedded systems. For instance, if firmware utilizes a 640 x 480, 32-bit framebuffer, a total of 1.2 Mbytes is required. Stolen memory would need to be configured as 8 Mbytes or higher, since the next smaller option is only 1 Mbyte, too small for the 640 x 480, 32-bit framebuffer. In such a case, stolen memory can be programmed to 1 Mbyte. The additional memory required for the framebuffer can then be provided by reserved memory, allowing a minimum amount of memory to be removed from the OS.

Note: Reserved memory is only available on the Microsoft Windows CE operating system, and must be accounted for in the `config.bib` memory layout file.

Additionally, the Microsoft Windows CE display driver can be configured for either static or dynamic allocation of video memory. The static model preallocates physical memory for the display driver and provides a more efficient surface allocation scheme. The dynamic model allocates surface memory on demand from the system and will incur a small performance hit. However, the dynamic model has the advantage of deallocation of video memory when not required, thus making it available to other applications.

The static memory model requires a base and size specification registered in the `project.reg` file. The base + size must reach to top of memory (TOM). Since this is not required to be specified in the `config.bib` memory map, care must be taken not to overlap any other memory arenas with the static allocation. See Section 6.3.1.2, "Defining Graphics Memory Size" on page 127 for further details on how to configure the static memory model.

Figure 33 shows a typical memory map, using a static memory model.

Table 32. [HKLM\DRIVERS\Display\Intel] Registry Keys

<table>
<thead>
<tr>
<th>Registry Entry</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCFversion</td>
<td>Specifies the version of the current configuration file.</td>
<td>400 or 700</td>
</tr>
<tr>
<td>ConfigId</td>
<td>This selects the configuration set.</td>
<td>1, 2, 3, 4, or 5</td>
</tr>
<tr>
<td>PortDrivers</td>
<td>List of port drivers to be dynamically loaded when the system boots. The dll's must exist in the \c:\Windows directory. sDVO transmitter port drivers to load when the system boots.</td>
<td>Space separated string enclosed in quotes, where each port driver name is listed in the string. The default string included with the release has all supported port drivers.</td>
</tr>
</tbody>
</table>
6.3.1.2 Defining Graphics Memory Size

The driver supports the ability to allocate graphics memory dynamically by sharing system resources with the operating system or statically by pre-allocating a block of system memory to be used exclusively by the graphics driver.

To configure the driver to operate using static video memory, two registry settings "ReservedMemoryBase" and "ReservedMemorySize" need to be enabled and defined with valid values. These two registry entries control the start address and size of the memory range pre-allocated for graphics driver use. The pre-allocated memory range should include the stolen memory (BIOS setting). For the Intel® System Controller Hub US15W chipset, this feature does not reuse the stolen video memory reserved by BIOS. Intel recommends getting BIOS to limit this to the smallest size as this memory is wasted due to some OS-HW combinational limitation.

For example, on a system with 512 MBytes of system memory and 4 MBytes of stolen memory (BIOS option), if an additional 14 MBytes of graphics memory (for a total of 18 MBytes) is desired, these settings should be used.

"ReservedMemoryBase"=dword:1E400000
"ReservedMemorySize"=dword:01C00000

These settings indicate that the managed graphics memory pool will begin at physical address 0x1E400000 (484 MBytes) and will be 18 MBytes in size. As you can see, the base address, "ReservedMemoryBase" is the physical system address value and the stolen memory from the BIOS settings is included.

Check with the platform you are using to ensure you have all the stolen memory taken into account. For example, in the case of the Cobra board that uses Intel's ACSFL firmware, 2 MBytes of stolen video memory needs to be included in this configuration. Always remember to include the amount of stolen memory in this number.

Besides the registry entry, the Platform Builder working project also needs to be updated to ensure that the kernel does not try to access this stolen memory. Two items in the config.bib of the project workspace needs to be edited.
The two items are the nk image / RAM memory partitioning and the memory reservation list. Using the example of the registry configurations above, the kernel would have to be configured not to use the physical memory above the 484 MByte mark since that's where the static video memory begins. Thus, the total of the nk image and the system's available RAM must be no more than 484 MBytes, so therefore you must change your `config.bib` accordingly:

NK 80220000 009BE0000 RAMIMAGE ;14 MBytes for nk.bin + misc.

RAM 80C00000 1DA00000 RAM ;42 MBytes for RAM

As you see, the **NK.BIN** image (plus the lower conventional memory DMA buffers used by Windows CE) takes 10 MBytes; 474 MBytes is for the RAM. Thus, the memory area above the 484 MByte mark is untouched by the kernel and will be used by the display driver.

Overall solution from above example settings in terms of physical system memory viewpoint:
6.3.1.3 Framebuffer and Video Surface Size

Two additional optional registry settings are available to limit the framebuffer size of the display driver and the total size of offscreen video surfaces.

The `MaxFbSize` registry entry will control the maximum size of the framebuffer only. Actual usage will depend on the mode being used.

The `PageReqLimit` registry entry will control the total size in pages (4 Kbytes) of all video surfaces, buffers allocated for any use. Both of these registry configurations apply to both the static as well as dynamic video memory management explained in the previous section. The default below indicates that a maximum of 2 Mbytes are used for the framebuffer and a maximum of 16 Mbytes are permitted for all offscreen videosurface allocations.

```
"MaxFbSize"=dword:200000
"PageReqLimit"=dword:1000
```

In the case of Microsoft Windows CE*, because the OS does not allow for dynamically setting the framebuffer size, the `MaxFbSize` can be changed to match the mode setting being used in order to minimize on video memory wastage. The following are different suggested values for `MaxFbSize` for different display modes. These values have not been validated. Note that 640x480 is calculated as 640x512 and 800x600 is calculated as 800x768 for stride alignment purposes.

```
640x512X16 = A00000
640x512X24 = F00000
640x512X32 = 140000
800x768X16 = 12C0000
800x768X24 = 1C20000
800x768X32 = 2580000
1024x768X16 = 1800000
1024x768X24 = 2400000
1024x768X32 = 3000000
1280x1024x16 = A000000
1280x1024x32 = A000000
```

6.3.1.4 Video Surface Allocation Rule

Another two optional registries entries determine a minimum width and height dimension that allow video surface allocations to succeed.

In Windows CE GDI, video surface allocations can happen with a REQUIRE_VIDEO_MEMORY or a PREFER_VIDEO_MEMORY flag. The following options will force surface allocations with the PREFER_VIDEO_MEMORY flag to be allocated in system memory if the width and height are lower than stated.

The "MinVidSurfX" registry entry defines the minimum width a surface allocation must be in order for it to succeed with video memory. "MinVidSurfY" defines the minimum height. The surface allocation will succeed to be in video memory if either the width or the height is at the required minimum.

```
"MinVidSurfX"=dword:10
"MinVidSurfY"=dword:10
```
In this example, surfaces allocated with the PREFER_VIDEO_MEMORY where the width and height are both less than 16 pixels are forced to be in system memory.

This option increases performance of the display device as smaller video images, such as icons, would be kept in system memory and only blitted onto the visible frame buffer when they are needed. This would ensure the display device is used optimally for larger video surfaces where acceleration makes sense.

6.3.1.5 System to Video Stretch Blit

System to Video Memory stretch blits are not natively supported on Intel GMCH devices. This feature allows you to enable a soft copy of system surfaces to video surfaces in order to conduct an accelerated stretch blit. The advantage of this is that the stretch blit then utilizes the blend engine and hardware filtering can be applied. The filtering options are listed in Section 6.3.2.

A value of 1 for the “SysToVidStretch” enables system to video stretch blits, as described above, while a value of 0, disables this feature and forwards all system to video stretch blits to the emulator provided by the operating system.

[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\General]
"SysToVidStretch"=dword:0

6.3.1.6 iegd.reg File Backward Compatibility

The Intel Embedded Graphics Driver expects a configuration file in the PCFVersion 700 format. However, the driver will maintain backward support with version 4.0. This support is implemented through the PcfVersion key as shown below:

[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\General]
"PcfVersion"=dword:400

The IEGD uses this key to determine the format of the configuration file. When this key is present, IEGD parses the configuration file using the format specified by the key (400 or 700). If this key is not present, then IEGD assumes 4.0 format.

6.3.2 Configuration Sets

The Intel® Embedded Graphics Drivers allows multiple configuration sets for OEMs who want to use the same iegd.reg file across different platforms. There can be up to 16 instances of configurations. The registry key described in the previous section, ConfigId, ensures the display driver selects the right instance. Each instance may contain multiple groups of per-config and per-config+per-port platform customizations.

The configuration sets are defined in the registry tree as

[HKEY_LOCAL_MACHINE\Drivers\Display\Intel<platform><config id>],

Where <config id> is the configuration number. The “ConfigID” key described in the previous section selects the active configuration set.

6.3.3 General Configuration

Registry keys described in this section can be found in [HKEY_LOCAL_MACHINE\Drivers\Display\Intel<platform><config id>], where <config id> is the configuration number, and where <platform> is one of the following: ALL, Q45/G41/G45, US15W/US15WP/WPT, GM45/GL40/GS45, Q35, GLE960/GME965, Q965, 945G, 945GME/945GSE, 945GSE, 915GV, 915GME, and 910GMLE. The driver first attempts to find the configuration or platform on which it is booted, but if the configuration for that platform is not present, the driver uses the ALL platform setting.
Table 33. [HKLM\Drivers\Display\Intel\<platform>\<config id>\] Registry Keys

(Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Registry Entry</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>Width of the display</td>
<td>Width and Height must be expressed as hexadecimal values. For example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1024 x 768: 400 x 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 x 600: 320 x 258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640 x 480: 280 x 1E0</td>
</tr>
<tr>
<td>Height</td>
<td>Height of the display</td>
<td>See above.</td>
</tr>
<tr>
<td>Depth</td>
<td>Color depth in bpp (bits per pixel)</td>
<td>Depth must be expressed as a hexadecimal number and must be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8bpp: 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16bpp: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24bpp: 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32bpp: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note that the Intel 915 chipsets do not support 24 bpp.)</td>
</tr>
<tr>
<td>Refresh</td>
<td>The refresh rate of the display.</td>
<td>Refresh rate must be in hex:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 : 3c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 : 46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 : 4b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 : 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>etc...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This value can be any valid refresh rate as long as the display port supports it. A refresh of '0' takes the first refresh that matches width, height and depth.</td>
</tr>
<tr>
<td>NO_D3D</td>
<td>Specify whether to enable D3D.</td>
<td>0 = Enable D3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Disable D3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default is 0.</td>
</tr>
<tr>
<td>ReservedMemoryBase</td>
<td>Video memory can be statically reserved or dynamically allocated on demand. If both ReservedMemoryBase and ReservedMemorySize are non-zero, then Video memory allocation utilizes the static model.</td>
<td>The ReservedMemoryBase plus the ReservedMemorySize must extend to the TOM (Top Of Memory) and not conflict with other reserved memory arenas in config.bib. Default for both base and size is zero, indicating a dynamic allocation model. Default behavior disables static memory model.</td>
</tr>
<tr>
<td>ReservedMemorySize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxFbSize</td>
<td>Maximum size of the expected framebuffer. By providing this hint, the display driver can more efficiently organize GART memory, leading to a smaller video memory consumption.</td>
<td>Must be greater than or equal to the expected size of framebuffer. Units are in bytes. Specifying zero causes the default framebuffer reservation sizing. Default: All other chipsets: 16 Mbytes</td>
</tr>
<tr>
<td>MinVidSurfX</td>
<td>In pixels, the minimum width and height of surfaces in order to be acceptable for allocation in Video memory. Due to hardware restrictions that optimize memory access, it is advisable to reserve video memory for larger surfaces and allow GDI and DirectDraw* to allocate small surfaces from system memory.</td>
<td>No limitations. Suggested values for both width and height are 10. Default value for both width and height is 1. Default: MinVidSurfX = 1 MinVidSurfY = 1</td>
</tr>
<tr>
<td>MinVidSurfY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 33. [HKLM\Drivers\Display\Intel\<platform>\<config id>\]Registry Keys (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Registry Entry</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
</table>
| SysToVidStretch | Enables system-to-video memory stretch blit operations to take advantage of hardware-accelerated filtering. Normally, it is more efficient to allow GDI to conduct system-to-video stretch blits, but the default filtering used by GDI is Nearest. | 0 = Disabled
1 = Enabled
Default: 0 |
| BlendFilter | Provides selection of hardware-accelerated filtering methods for stretch blit operations. | 0 = Nearest
1 = Bilinear
2 = Anisotropic
Default: 2 |
| TearFB | If enabled, all blit operations to the framebuffer are synchronized with video sync to eliminate any visible tearing or flickering on the display screen. Disabling this feature achieves a performance gain. | 0 = Disabled, tearing allowed
1 = Enabled, no visible tearing
Default: 1 |
| OverlayDualVext | Provides selection for enabling two hardware overlay planes (one for each screen) to display independent video stream on each overlay plane. This selection only applicable in Vertical Extended Mode on Intel® System Controller Hub US15W. Note that the hardware overlay plane for each display locks on that screen; the overlay fails to display if it is crossed into the wrong screen. | 0 = Disabled
1 = Enabled
Default: 0 |
| DisplayConfig | The "DisplayConfig" key sets the display configuration to be in Single, Twin, Clone, or Vertical Extended modes. (Unlike Microsoft Windows® XP, Microsoft Windows CE* does not support Extended mode). It does not, however, dictate what type of display ports will be used. | 1 (single), 2 (clone), 4 (twin), 5 (vertical extended) |
| DisplayDetect | The "DisplayDetect" key allows the user to enable a display port only if a display device is connected. Displays without EDID will not be detected. | 0 = disable
1 = enable
Default: 0 |
| PortOrder | The PortOrder setting ensures the correct display port types are used based on user selection. | See Section 6.3.3.1. |
6.3.3.1 PortOrder Information

PortOrder specifies the actual ports that are used for the Primary and Secondary display. As shown in the table below, the port numbers are slightly different among the supported chipsets.

Table 34. PortOrder Information

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Chipsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integrated TV Encoder</td>
</tr>
<tr>
<td>2</td>
<td>sDVO B Port/RGBA Port</td>
</tr>
<tr>
<td>3</td>
<td>sDVO C Port</td>
</tr>
<tr>
<td>4</td>
<td>Internal LVDS Port</td>
</tr>
<tr>
<td>5</td>
<td>Analog Port</td>
</tr>
</tbody>
</table>

The driver attempts to use the ports in the order specified by "PortOrder". For example, "PortOrder" = "5420" will assign the analog port to the primary display and the LVDS port to the secondary display (if any), assuming all the ports are present and detected. Suppose port "5" is not present, in that case the driver tries to assign the next port (4, in this case) in line to the primary display, resulting LVDS port for primary and sDVO B port for secondary.

Setting PortOrder to "00000" causes the driver to use default internal settings.

```
;--------------------------------------------------------------------------
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\General]
; Select Port Order
; "PortOrder"="54320"

; PortOrder specifies the actual of port that will be taken for the Primary /
; Secondary ports if there are duplicates of the same type. For example, if both
; Primary and Secondary are digital, then port order will which sDVO ports will be
; first and second. The section below gives the port order numbers for various chipsets.
; Specify value "0000" to use default settings.
; On i915 chipsets:
;--------------------------------------------------------------------------
; 1 = Integrated TV Encoder
; 2 = sDVO B port/RGBA port
; 3 = sDVO C port
; 4 = Internal LVDS port
; 5 = Analog port
;```
6.3.3.2 **Vertical Extended Mode**

The Windows CE* IEGD driver supports Vertical Extended display mode, which is one large framebuffer that extends across two displays by doubling the height of resolution. The top half of the framebuffer is on the first pipe and the bottom half is on the second pipe. The Windows CE operating system is unaware of the two displays. This feature is supported only on the dual-pipelined chipsets, which is every supported platform stated in Section 6.2.1.

This feature is enabled through the `DisplayConfig` key in the `project.reg` file. The resolution, bit depth, and refresh rates of both displays must be the same. Vertical and horizontal panning are not supported. DirectDraw is supported on both pipes, but DirectDraw 3D must be disabled when Vertical Extended Display mode is enabled.

6.3.4 **Per Port Platform Customization**

The Intel Embedded Graphics Drivers provide what is considered the most useful tools to the embedded market — per port platform customizations. This includes the following:

- Defining custom DTD panel timings:
  - `PixelClock`, `HorzActive`, `HorzSync` etc...
- Customized GPIO pin selection for I²C and DDC communication with sDVO encoders and panels:
  - `I2cPin`, `I2cDab`, `I2cSpeed` etc...
- Flat Panel width and height limitations and power and/or backlight control mechanisms:
  - `BkltMethod`, `BkltT1`, `BkltT2`, `GpioPinVdd` etc...
- Port driver specific attribute settings for initialization at boot time:
  - `Brightness`, `Contrast`, `H-Position` etc...

All of the above can be set for each individual port depending on the maximum number of ports the chipset supports. Also, you can have multiple instances of these configurations to allow different settings per configuration.

The usage model for this per-config, per-port platform customizations follows after the same options available in the INF registry settings for the Intel Embedded Graphics Drivers for Microsoft Windows XP*. Please see Figure 6.3.7, “Sample iegd.reg File” on page 138 or to the provided registry sample file in the IEGD Windows CE* driver package for examples. The following sections provide information on these configurations.

6.3.4.1 **Per Port Customization — General Port Configuration**

This section describes port-specific general configuration options. These options are located under

```
[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\Port\1\General]
```

- **Edid**
  - This boolean key enables (set to 1) or disables (set to 0) the EdidAvail and EdidNotAvail keys.
EdidAvail and EdidNotAvail
These two 16-bit keys control the available timings for the display. If an EDID is successfully read from the display device, then IEGD uses the EdidAvail flag to determine what timings are available. Otherwise, if an EDID cannot be read, then IEGD uses the EdidNotAvail key.

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Value (0 or 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable/Enable driver built-in timings</td>
</tr>
<tr>
<td>1</td>
<td>Disable/Enable EDID timings. (Only valid for the EdidAvail flag)</td>
</tr>
<tr>
<td>2</td>
<td>Disable/Enable DTD</td>
</tr>
<tr>
<td>3-15</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

CenterOff
If the selected frame buffer size is smaller than what the IEGD hardware can support, by default the frame buffer will be centered with a black border around it. To explicitly turn off this feature, the user may set the “CenterOff” key to “1”.

Rotation and Flip
IEGD supports desktop rotation through the “Rotation” key in Single, Twin, and Clone mode. Rotation is not supported in Vertical Extended Mode. The “Rotation” key can be set to one of the four follow values.

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Key Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (default)</td>
</tr>
<tr>
<td>90</td>
<td>5A</td>
</tr>
<tr>
<td>180</td>
<td>B4</td>
</tr>
<tr>
<td>270</td>
<td>10E</td>
</tr>
</tbody>
</table>

So, “Rotation”=dword:5A will rotate the frame buffer 90 degrees. The “Flip” key flips the desktop horizontally, displaying a mirror image. “Flip” is a boolean value: 1 to enable, 0 to disable.

Scale
IEGD can scale the desktop to the output panel using the panel’s DTD or EDID (in that order). Scaling (attribute ID “18”) is a boolean value, “18”=dword:1 to enable, 0 to disable.

6.3.4.2 Per Port Customization — Custom DTD Timings
For each configuration, each port can be added with up to 255 customized DTD modes.

The following is an example of adding 800x640 mode to the LVDS port when ConfigId=1 is used.

\[
\begin{array}{|c|c|}
\hline
[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\Port\4\DTD\1] \\
“PixelClock”=dword:9c40 \\
“HorzActive”=dword:320 \\
“HorzSync”=dword:28 \\
“HorzSyncPulse”=dword:80 \\
“HorzBorder”=dword:0 \\
“HorzBlank”=dword:100 \\
“HorzSize”=dword:0 \\
“VertActive”=dword:280 \\
\hline
\end{array}
\]
"VertSync"=dword:1
"VertSyncPulse"=dword:4
"VertBorder"=dword:0
"VertBlank"=dword:1c
"VertSize"=dword:0
"Flags"=dword:1e

6.3.4.3 Per Port Customization — Custom Flat Panel Controls

Similarly, the flat panel native resolution and power and backlight sequencing controls can also be configured here.

;[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\Port\1\FPInfo]
 ;  "BkltMethod"=dword:0
 ;  "BkltT1"=dword:0
 ;  "BkltT2"=dword:0
 ;  "BkltT3"=dword:0
 ;  "BkltT4"=dword:0
 ;  "BkltT5"=dword:0
 ;  "GpioPinVdd"=dword:0
 ;  "GpioPinVee"=dword:0
 ;  "GpioPinBklt"=dword:0
 ;  "BkltEnable"=dword:0
 ;  "UseGMCHClockPin"=dword:0
 ;  "UseGMCHDataPin"=dword:0

Note: For Per-Config, Per-Port configuration, the subkey path includes the correct "Config" and "Port" numbers.

6.3.4.4 Per Port Customization — Attribute Initialization

Attributes are also per config and per port. However, the actual keys are dependant on the port driver being used. Below are examples of registry keys associated with initializing attributes for the Chrontel Port Driver.

For complete information on port driver attributes, refer to Appendix B.

Note: For Per-Config, Per-Port configuration, the subkey path includes the correct "Config" and "Port" numbers.

The following example sets the port driver attributes using the attribute IDs. Please see Section B.2.4, “Internal TV Out Port Driver Attributes (Mobile chipsets only)” on page 217 for a list of attribute IDs and their meanings.

[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\Port\1\Attr]
 "0"=dword:32
 "1"=dword:4
 "3"=dword:1
 "8"=dword:1
 "12"=dword:0
 "14"=dword:1
 "19"=dword:1
6.3.5  Miscellaneous Configuration Options

This section covers registry settings not in [HKEY_LOCAL_MACHINE\Drivers\Display\Intel].

6.3.5.1  Text Anti-Aliasing

The Microsoft Windows CE* driver supports text anti-aliasing. To switch it on, add these registry settings:

[HKEY_LOCAL_MACHINE\System\GDI\Fontsmoothing]
[HKEY_LOCAL_MACHINE\System\GDI]
"ForceGRAY16"=dword:1

*Note:* Text Anti-Aliasing should always be turned on when using a TV display device.

6.3.6  Direct3D* Mobile Support

IEGD v10.3.1 supports Direct3D* Mobile on Windows CE* 5.0 and 6.0. Users need to ensure that their Windows CE target machine platform workspace has been included with D3D Mobile support. This is done by simply dragging the D3D Mobile component from the catalog view to the workspace in Windows CE 5.0 or turning it on via the check box in Windows CE 6.0.

Also, the new IEGD D3D mobile driver binary, "iegd3dg3.dll" (part of the IEGD driver release for Windows CE 5.0 and 6.0) needs to be included in the workspace image. Add this binary into the ".BIB" configuration file of the target platform workspace (see Figure 32):

```
IEGD v10.3.1 supports Direct3D* Mobile on Windows CE* 5.0 and 6.0. Users need to ensure that their Windows CE target machine platform workspace has been included with D3D Mobile support. This is done by simply dragging the D3D Mobile component from the catalog view to the workspace in Windows CE 5.0 or turning it on via the check box in Windows CE 6.0.

Also, the new IEGD D3D mobile driver binary, "iegd3dg3.dll" (part of the IEGD driver release for Windows CE 5.0 and 6.0) needs to be included in the workspace image. Add this binary into the ".BIB" configuration file of the target platform workspace (see Figure 32):

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
6.3.7 Sample iegd.reg File

```plaintext
;****************** BEGIN INTEL DISPLAY DRIVER REGISTRY ENTRY ******************
;*****************************************************************************
;*----------------------------------------------------------------------------
;* Copyright (c) Intel Corporation (2002 - 2009).
;* The source code contained or described herein and all documents
;* related to the source code ("Material") are owned by Intel
;* Corporation or its suppliers or licensors. Title to the Material
;* remains with Intel Corporation or its suppliers and licensors. The
;* Material contains trade secrets and proprietary and confidential
;* information of Intel or its suppliers and licensors. The Material is
;* protected by worldwide copyright and trade secret laws and
;* treaty provisions. No part of the Material may be used, copied,
;* reproduced, modified, published, uploaded, posted, transmitted,
;* distributed, or disclosed in any way without Intels prior express
;* written permission.
;*
;* No license under any patent, copyright, trade secret or other
;* intellectual property right is granted to or conferred upon you by
;* disclosure or delivery of the Materials, either expressly, by
;* implication, inducement, estoppel or otherwise. Any license
;* under such intellectual property rights must be express
;* and approved by Intel in writing.
;*----------------------------------------------------------------------------
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PCI\Template\IEGD]
    "Dll"="isr_iegd.dll"
    "Class"=dword:03
    "SubClass"=dword:00
    "ProgIF"=dword:00
    "VendorID"=multi_sz:"8086"
    "DeviceID"=multi_sz:"8108"
    ; US15 is the only chipset supporting interrupts
    "Prefix"="IGD"
    "IsrDll"="isr_iegd.dll"
    "IsrHandler"="isr_handler"
;*****************************************************************************
[HKEY_LOCAL_MACHINE\System\GDI\Drivers]
    "Display"="ddi_iegd.dll"
    [HKEY_LOCAL_MACHINE\System\D3DM\Drivers]
    "RemoteHook"="ddi_iegd.dll"
    [HKEY_LOCAL_MACHINE\System\GDIM\Drivers]
    "D3DMOverride"="ddi_iegd.dll"
;*****************************************************************************
; The Following Sections Provide
; General Driver-Wide Registry Settings
;*****************************************************************************
[HKEY_LOCAL_MACHINE\Drivers\Display\Intel]
;*****************************************************************************
; Following registry entry for
; pcf version used
; 700 : IEGD version
;*****************************************************************************
"PcfVersion"=dword:700
```
Configuring and Building the IEGD for Microsoft Windows CE* Systems

; This value dictates the configuration to select for Per-Port settings from port specific registry. The settings mirror Windows XP IEGD drivers implementation. Refer to the User’s Guide for details.

"ConfigId"=dword:1

; Provide a list of port drivers to attempt to load upon boot time

"PortDrivers"="analog ch7009 ch7017 fs454 lvds ns2501 ns387 sii164 ti410 th164 sdvo hdmi tv"

; The Following Sections Provide Per-Config configuration. The Platform string in the path can be “ALL” for all platforms, or any of the following for platform-specific configurations:
; Q35, GM965, Q965, 946GZ, 945G, 945GM, 915GV, and 915GM

[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\ALL\1\General]

; Following registry entries for display settings: resolution, bit depth and refresh rate

; Width & Height values must be hex, for example
; 1400x1050 : 578h x 41Ah
; 1280x1024 : 500h x 400h
; 1024x768 : 400h x 300h
; 800x600 : 320h x 258h
; 640x480 : 280h x 1E0h
; etc...

; In vertical extented mode, height is doubled
; 640x960 : 280h x 3c0
; 800x600 : 320h x 4b0h
; etc...

"Width"=dword:320
"Height"=dword:258

; Bit depth must be one of:
; 8bpp : 8
; 16bpp : 10
; 24bpp : 18
; 32bpp : 20
; (all current IEGD 6.0 & above chipsets do not support 24 bpp)

"Depth"=dword:20

; Refresh rate must be in hex:
; 60 : 3c

Intel® Embedded Graphics Drivers and Video BIOS v10.3.1
User’s Guide March 2010
Document Number: 274041-029US
Installing and Configuring Microsoft Windows CE Drivers
; 70 : 46
; 75 : 4b
; any refresh rate as long as the display port supports it refresh of '0' will take the first refresh that matches width, height and bpp
;--
"Refresh"=dword:3c
;--
; Following is registry entry for controlled configuration of video memory usage / location
;
; The following settings are for a 64M platform, where the video memory is 14M at the top the above settings are assuming there is no system bios / firmware that has stolen memory from top of memory. If it does exist reduce ReservedMemorySize avoiding overlap exception for ACSFL, memory area is reused
;
; NOTE: CURRENTLY THESE SETTINGS ARE REMARKED FOR DYNAMIC VIDEO MEMORY CONFIGURATION
;--
"ReservedMemoryBase"=dword:03200000
"ReservedMemorySize"=dword:00E00000
;--
; Below is Maximum Frame Buffer Size used to limit the maximum size in bytes of the main frame buffer
;--
"MaxFbSize"=dword:800000
;--
; Page Request Limit is used to control the max allocations of offscreen video surfaces, buffers etc.. value is in number of pages (4K).
; this is independent of dynamic or static memory configuration.
;
; The max for 915s, 945s = 256 Mbytes = 0x10000
;--
"PageReqLimit"=dword:0
;--
; Above settings are to define a minimum width and height that would allow for video surface allocations to succeed, eg: surfaces with width < 16 are forced to be in system-mem, surfaces with height < 16 are forced to be in system-mem only affects allocations of surfaces with GPE_PREFER_VIDEO_MEMORY flag
;--
"MinVidSurfX"=dword:10
"MinVidSurfY"=dword:10
;--
; Following are the registry entries for acceleration configuration
;--
Installing and Configuring Microsoft Windows CE Drivers
Intel® Embedded Graphics Drivers and Video BIOS v10.3.1
User’s Guide March 2010
Document Number: 274041-029US
; Set SysToVidStretch to '1' enables driver to perform System to Video stretch blits
;--
"SysToVidStretch"=dword:0
;--
"BlendFilter"=dword:2
; Option for enabling/disabling TEARING - Default is OFF
;--
; Set '1' to enable the NOTEARING option
"TearFB"=dword:1
;--
; Specify whether to enable d3d
; NO_D3D Value: 0 (default)
; : 0 --> Enable D3D
; : 1 --> Disable D3D
;--
"NO_D3D"=dword:0
;--
; Select Display configuration, single, twin ...
; Possible Display Config combo:
; DisplayConfig 1 == SINGLE
; (Single is default if none specified)
; DisplayConfig 4 == TWIN
; --> (Twin mode: common timing across ports)
; DisplayConfig 2 == CLONE
; --> (Clone mode: distinct timing per port)
; DisplayConfig 5 == VEXT (vertical extend)
; --> (Vert Extended modes: "Height")
; (registry key value must be 2X the)
; (intended port timings. Both ports)
; (must use the same timings. For)
; (example, for port timings of)
; (800x600, the DisplayConfig should)
; (be 5 and the Height=1200 or 0x4b0)
; (Overlay will not work in VEXT mode.)
; (915GV does not support Vext)
;--
"DisplayConfig"=dword:1
;--
; Select Port Order
; PortOrder specifies the actual port that will be used for the primary and secondary ports. IF specified port is unavailable (port driver failed or display detection failed or port is not available on current chipset), then the next port in the above order will be used. PortOrder must be set, based on chipset specifications:
; On i915 chipsets:
;---
; 1 - Integrated TV Encoder
; 2 - sDVO B port/RGAB port
; 3 - sDVO C port
; 4 - Internal LVDS port
; 5 - Analog port
;---
; On i865 chipsets:
;---
; 1 - sDVO A port
; 2 - sDVO B port/RGAB port
; 3 - sDVO C port
; 4 - Internal LVDS port
; 5 - Analog port
;
; On 835: If RGBA is used (sDVO B & C together), then use sDVO B number
; to specify any parameter for it.
;
; On i81x chipsets:
; -------------------------------
; Port numbers:
; 3 - sDVO port
; 5 - Analog port
;---
"PortOrder"="52340"
;---
; Set Clone Port resolutions
;---
"CloneWidth"=dword:320
"CloneHeight"=dword:258
"CloneRefresh"=dword:3c
;---
; Set "1" to enable Display Detection
; DisplayDetect is to detect display child device before using it
; (panel/tv/etc...).BEWARE, setting this to '1' will mean display for the
; requested port will not be enabled if detection failed. Use this option wisely.
;---
"DisplayDetect"=dword:0
;---
; Set "1" to enable Dual Overlay in Vertical Extended in Windows CE 6.0
; This is set by the user to enable Dual Hardware Overlays. This is a special
; flag for a specific usage. When two apps request overlays, these two will
; use the two hardware overlays
;---
"OverlayDualVext"=dword:0
;---
; Overlay Color Correction Settings
; Gamma: 32-bit integer in 24.8f format, ranging from 0.6 - 6.0 decimal
; Brightness: 32-bit integer ranging from 0 to 0xFFFF. 0x8000 = no correction
; Contrast: 32-bit integer ranging from 0 to 0xFFFF. 0x8000 = no correction
; Saturation: 32-bit integer ranging from 0 to 0xFFFF. 0x8000 = no correction
;---
"OverlayGammaCorrectR"=dword:100
"OverlayGammaCorrectG"=dword:100
"OverlayGammaCorrectB"=dword:100
"OverlayBrightnessCorrect"=dword:8000
"OverlayContrastCorrect"=dword:8000
"OverlaySaturationCorrect"=dword:8000
;---
; The sections below are for the more detailed per port
; registry configurations. It follows the same usage model and
; key value meanings as the Windows INF registry configuration
; file. Refer to the User’s Guide for details.
;---
; Config 1 - sDVO-B Port (For Almador) |
Configuring and Building the IEGD for Microsoft Windows CE* Systems

Following are the registry entries for port's general config:

```
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\General]
; Advanced Edid Configuration
; ---------------------------
; "Edid"=dword:1
; "EdidAvail"=dword:7 ; STD TIMINGS + EDID TIMINGS + USER TIMINGS
; "EdidNotAvail"=dword:7 ; STD TIMINGS + USER TIMINGS
;
; EdidAvail and EdidNotAvail: <only 16 bits used>
; ---------------
; These 2 parameters can be used to control the available timings for
; any display. 'EdidAvail' is used when EDID is read from the display
; device. If an attempt to read EDID is failed or 'Edid = 0' then
; driver uses 'EdidNotAvail' flags.
;
; See below bit definitions for both 'EdidAvail' and 'EdidNotAvail'
;
; BIT 0:
; ------
; 0 - Do not use driver built-in standard timings
; 1 - Use driver built-in standard timings
;
; BIT1: <not applicable to EdidNotAvail>
; ------
; 0 - Do not use EDID block
; 1 - Use EDID block and filter modes
;
; BIT2:
; ------
; 0 - Do not use user-DTDs
; 1 - Use user-DTDs.
;
; BIT3-BIT15
; ---------------
; Future use.
;
; Default behavior:
; -------------------
; If user does not provide EdidAvail and EdidNotAvail, then
; EdidAvail = Use Std timings + Use EDID block and Filter modes
; EdidNotAvail = Use Std timings
;
; Rotation Configuration
; ---------------------
; "Rotation"=dword:0
; Rotation entries must be at a right
; angle. An invalid entry will be ignored and
; and no rotation will happen for primary.
; In clone or twin modes, the secondary
; port defaults to follow the primary (if set)
; 0 degrees - 0 (not rotated - default)
; 90 degrees = 5A
; 180 degrees = B4
; 270 degrees = 10E
;
; Flip Configuration
; ----------------------
; "Flip"=dword:0
; Flip has a valid entry of 1 to turn on
; and 0 to turn off. When turn on the display
; will be horizontally flip.
;
; Rendered Scaling Configuration
; ------------------------------
; "Scale"=dword:0
; Scale works as a boolean switch. Valid
; entries are zero or 1. When "Scale" = 1,
; IEGD will scale the requested framebuffer
; resolution to the fixed native panel size
; indicated by per-port FPInfo, User-DTD or
; EDID (in that order).
; In clone or twin modes, the secondary
; port defaults to follow the primary (if set)
;-------------------------------------------------------------------------
; Following are the registry entries
; for port's sDVO I2C settings
;-------------------------------------------------------------------------
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\sDVO]
; "I2cPin"=dword:2
; "I2cDab"=dword:70
; "I2cSpeed"=dword:0
; "DdcPin"=dword:0
; "DdcSpeed"=dword:0
;-------------------------------------------------------------------------
; Following are the registry entries
; for port's flat panel's mode-limits,
; power and backlight control
;-------------------------------------------------------------------------
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\FPInfo]
; Only need Width & Height if Panel cannot accept other timings
; "BkltMethod"=dword:3
; "BkltT1"=dword:1E
; "BkltT2"=dword:4
; "BkltT3"=dword:4
; "BkltT4"=dword:14
; "BkltT5"=dword:1F4
; "GpioPinVdd"=dword:27
; "GpioPinVee"=dword:26
; "GpioPinBklt"=dword:28
; "UseGMCHClockPin"=dword:0
; "UseGMCHDataPin"=dword:0
;-------------------------------------------------------------------------
; Following are the registry entries
; for ports first custom DTD mode to add
;-------------------------------------------------------------------------
Configuring and Building the IEGD for Microsoft Windows CE* Systems

;[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\DTD\1]
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:280
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e

;--------------------------------------------------------------
; Following are the registry entries
; for ports second custom DTD mode to add
; (Up to 255 can be added)
;--------------------------------------------------------------

;[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\DTD\2]
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:258
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e

;--------------------------------------------------------------
; Following are the registry
; entries for the port device'
; display attribute parameters
; Use when enabling Port device
; example below is for Conexant
; on Port2 (sDVO-B for almador)
; key names depend on port driver
;--------------------------------------------------------------

;[HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\Attr]
; "Brightness"=dword:32
; "Contrast"=dword:4
; "Flicker Filter"=dword:1
; "Saturation"=dword:4
; "Hue"=dword:32
; "Text Filter"=dword:0
; "Overscan ratio"=dword:1
; "TV Format"=dword:1
; "TV Output"=dword:1
; "Composite and S-Video"=dword:1
Config 1 - Analog Port (For Any Chipset)

; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\5\General]
; "Edid"=dword:1
; "EdidAvail"=dword:7 ; STD TIMINGS + EDID TIMINGS + USER TIMINGS
; "EdidNotAvail"=dword:7 ; STD TIMINGS + USER TIMINGS
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\Config\1\Port\5\attr]
; GAMMA, BRIGHTNESS, CONTRAST
; "35"=dword:a0a0a0 ; gamma: 3.5f format for R-G-B, ranging 0.6 to 6
; "36"=dword:808080 ; brightness: 0 to FF, 0x80 is no correction
; "37"=dword:808080 ; contrast: 0 to FF, 0x80 is no correction
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\Config\1\Port\5\DTD\1]
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:280
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\5\DTD\2]
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:258
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e

Config 1 - Int-LVDS Port (For 915GM)

; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\4\General]
; "Edid"=dword:1
; "EdidAvail"=dword:7 ; STD TIMINGS + EDID TIMINGS + USER TIMINGS
; "EdidNotAvail"=dword:7 ; STD TIMINGS + USER TIMINGS
; [HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\4\FPInfo]
; Only need Width & Height if Panel cannot except other timings
; "BkltMethod"=dword:0
; "BkltT1"=dword:0
; "BkltT2"=dword:0
; "BkltT3"=dword:0
Configuring and Building the IEGD for Microsoft Windows CE* Systems

; "BkltT4"=dword:0
; "BkltTS"=dword:0
; "GpioPinVdd"=dword:0
; "GpioPinVee"=dword:0
; "GpioPinBklt"=dword:0
; "UseGMCHClockPin"=dword:0
; "UseGMCHDataPin"=dword:0

\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\4\Attr\}
; "27"=dword:1
Attribute "27" - Dual Channel (boolean)
; "18"=dword:1
Attribute "18" - Panel Fit Upscale (boolean)

\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\4\DTD\1\}
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:280
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e

\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\4\DTD\2\}
; "PixelClock"=dword:9c40
; "HorzActive"=dword:320
; "HorzSync"=dword:28
; "HorzSyncPulse"=dword:80
; "HorzBorder"=dword:0
; "HorzBlank"=dword:100
; "HorzSize"=dword:0
; "VertActive"=dword:258
; "VertSync"=dword:1
; "VertSyncPulse"=dword:4
; "VertBorder"=dword:0
; "VertBlank"=dword:1c
; "VertSize"=dword:0
; "Flags"=dword:1e

---------------------------------------------------------------------
; Config 1 - sDVO Port-B (For Napa)
---------------------------------------------------------------------

\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\}
; "name"="IEGD sDVO Configuration File"
\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\}
; "name"="svga"
\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\FPInfo\}
For a sDVO driver, sample settings for the panel:1400x1050
Only need Width & Height if Panel cannot except other timings
; "Width"=dword:578
; "Height"=dword:61A
\{HKEY_LOCAL_MACHINE\Drivers\Display\Intel\915GV\1\Port\2\Attr\}
; "27"=dword:1
; Attribute "27" = Dual Channel (boolean)
; Optional - Only enable for font anti-aliasing
; Enabling this causes minor performance impact
; Only recommended for TV Output.
; [HKEY_LOCAL_MACHINE\System\GDI\Fontsmoothing]
; 
; [HKEY_LOCAL_MACHINE\System\GDI]
; "ForceGRAY16"=dword:1
;******************* INTEL DISPLAY DRIVER REGISTRY ENTRY END ******************


7.0 Installing and Configuring Linux* OS Drivers

This chapter describes the configuration and installation of the IEGD for Linux* systems. The IEGD supports X-Servers from the X.org* organization.

The Intel Linux driver is for use with the integrated graphics of Intel chipsets on the Embedded Intel Architecture roadmap. The driver supports 8-, 16- and 24-bit pixel depths, dual independent head configuration on capable hardware, flat panel, hardware 2D acceleration, hardware cursor, the XV extension, and the Xinerama extension. Stock library files, for example libva, can be used with IEGD.

7.1 Overview

Kernel patches, separate DRM modules, and kernel recompilation were all necessary in previous versions of the Intel Embedded Graphics Driver. In version 10.3.1, the IEGD Kernel Module (IKM) contains a combination of the agpgart and DRM modules which must be present for the Intel Embedded Graphic Driver. Both modules have been modified for the IEGD architecture and are combined with the Linux kernel.

The IEGD Linux distribution package contains drivers built for the following X-Servers:

- X-Server 1.3
- X-Server 1.4
- X-Server 1.5.3
- X-Server 1.6.x

The IEGD has been tested with the official version of these servers from the http://www.X.org Web site and may not operate with other versions of these servers.

During the installation, the x-version command returns a result indicating the server version, not the X.org version as was done in earlier versions.

7.2 Prerequisites

The following lists the prerequisites for installing and configuring the IEGD Linux* driver.

- Platform with supported Intel chipset.
- Platform with a minimum of 128 Mbytes.
- Resolution and timing specifications for the display devices that will be configured.
- Driver package consisting of directories and files (see the following reduced samples, which are located under the IEGD Linux directory).
### Note:

In the following, "Xorg-xserver 1.3/" is an example X-Server version that should be replaced with the version to be used.

- Documents/Relnotes
  - Documents/UsersGuide.pdf
  - Documents/Xorg-xserver 1.3/iegd.4
  - Documents/Xorg-xserver 1.3/IntelEscape.3x
- License/License.txt
- Driver/<xserver name>/iegd_drv.o (or iegd_drv.so for Xorg 7.0)
  - Driver/<xserver name>/libXlibXiegd_escape.a
  - Driver/<xserver name>/libXiegd_escape.so.2.0.0
  - Driver/<xserver name>/iegd_escape.h
  - Driver/<xserver name>/lvds.so
  - Driver/<xserver name>/tv.so

- Linux kernel header package for active running kernel.
  - Direct Rendering support enabled.

- Other system capabilities
  - IEGD Kernel Module for GART and DRM patches

- System administration privileges.

### 7.2.1 Supported Hardware

IEGD supports the following chipsets with integrated graphics:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
- Intel® 915GV Express chipset
- Mobile Intel® 915GME Express chipset
- Mobile Intel® 910GMLE Express chipset
7.3 **Installation**

Refer to Section 1.7, “Downloading the IEGD and Video BIOS” on page 20 for instructions on obtaining the software. You can then install the IEGD by performing the instructions for your specific distribution in the following sections:

- “Linux Installer Overview”
- “Installing Fedora 7 (not supported with Intel® US15W)” on page 152
- “Installing Fedora 10” on page 154
- “Installing Wind River Linux Platform for Infotainment” on page 156
- “Installing Red Hat Embedded (for Intel® US15W/US15WP/WPT only)” on page 158
- “Installing Ubuntu IEGD Driver and Codec (for Intel® US15W/US15WP/WPT only)” on page 161
- “Installing Moblin 2.1 IVI (for Intel® US15W only)” on page 170

*Note:* If you are using a Linux distribution different from those for which these instructions are designed, you may need to adapt the steps for your specific situation.

### 7.3.1 Linux Installer Overview

The Linux installer does the following:

- Automatically copies all appropriate IEGD files for detected kernel version and X-Server
- Invokes the Intel Kernel Module (IKM) to patch the kernel
- Runs AGP and DRM tests to make sure IKM was installed correctly
- Invokes Modprobe to enable IEGD module
- Creates a shortcut to the IEGD GUI on the desktop
- Supports uninstallation of IEGD

The Linux Installer script is located in `IEGD_10_3_1_Linux/Utilities/install.sh`. To execute the installer, run the following command:

```
./install.sh
```

To uninstall the IEGD files, run the following command:

```
./install.sh -u
```

*Note:* IEGD Linux Installer does not support all distributions. You may have to do a manual installation if your distribution is not supported. If an unsupported distribution is detected by the Linux installer, you have the option of continuing the installation manually.
### 7.3.2 Installing Fedora 7 (not supported with Intel® US15W)

IEGD v10.3.1 provides a Linux installer for Fedora 7 with X-Server 1.3 support. Other X-Server versions such as 1.4, 1.5, and 1.6 may work, but if the installer detects an unsupported distribution you can choose to continue with a standard installation. It also allows you to uninstall, reinstall, or upgrade your Fedora 7 driver.

**Note:** Before installing Fedora, determine whether you need to do either or all of the following:

- Disable SELinux security to allow the IEGD driver to load. To disable it, use the Security application in X. If you do not disable SELinux security, you will need to configure SELinux to allow IEGD to operate.
- Disable AIGLX because IEGD does not support or work with it. To disable AIGLX, add the **Option** "AIGLX" "FALSE" command to the `xorg.conf` file in the ServerFlags section.

#### Installation Steps

1. Log into a system administration account.
2. Untar the driver package to a convenient location.
   ```bash
tar -xvzf <driver package.tgz>
   ```
   This creates a directory structure in the directory where you extracted the `.tgz` file and contains the following directories:
   - **IEGD_10_3_1_Linux** - Contains the Documents, Driver, License, IKM, and Utilities subdirectories.
     The **Driver** directory contains subdirectories for the supported versions of the X.org X-Servers. This directory contains man pages for IEGD.
     The **Documents** directory contains the release notes.
     The **License** directory contains the license for the IEGD release.
     The **Utilities** directory contains IEGD utilities, including the iegdgui runtime configuration utility.
     The **IKM** directory contains files for patching the Linux kernel AGPGART module.
3. Invoke the Linux installer using the command `./install.sh` from the `IEGD_10_3_1_Linux/Utilities` folder. If successful, skip to step 11.
   **Note:** If the installer does not work, use the following manual install steps.
4. Check the version of the X-Server your system is running. Type the following command:
   ```bash
 X -version
   ```
   **Note:** For Fedora 7 (F7), the result from this command is 1.3.
5. Copy the IEGD driver binary, `iegd_drv.o` (or `iegd_drv.so`), from the `IEGD 10_3_1 Linux/driver/<xserver name>` directory to the X-Server's modules/drivers directory.
   For F7 (X-Server 1.3-based distribution), the default location is `/usr/lib/xorg/modules/drivers`. This location can vary by distribution so check your system for the proper path.
   ```bash
 cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3
 cp iegd_drv.so /usr/lib/xorg/modules/drivers
   ```
6. Copy the necessary port driver files (*.so files in the IEGD_10_3_1_Linux/driver/<xserver name> directory) to the X-Server lib/modules directory. The default installation location is /usr/lib/xorg/modules. This location can vary, so check your system for the proper path. After the required port drivers have been copied, you can specify them in the PortDrivers option in the Device section of the config file. For more information on specifying the PortDrivers option, refer to Table 44, "Supported Driver Options" on page 187. For example, to copy all the port drivers use the following command:

```
cp *.so /usr/lib/xorg/modules
```

7. Copy the escape control library libXiegd_escape.so.2.0.0 from the IEGD_10_3_1_Linux/driver/<xserver name> directory to the X-Server library directory. The default installation location is /usr/lib. For example,

```
cp libXiegd_escape.so.2.0.0 /usr/lib
```

8. In the X-Server library directory, create symbolic links for the escape library aliases:

```
cd /usr/lib
ln -sfv libXiegd_escape.so.2.0.0 libXiegd_escape.so
ln -sfv libXiegd_escape.so.2.0.0 libXiegd_escape.so.2
ldconfig
```

9. From the X-Server directory you are using, unzip the iegd.4.gz file and copy the driver man page, iegd.4, to the man/man4 directory. The default installation location is /usr/share/man/man4. This location can vary by distribution so check your system for the proper path. For example, for Fedora 7,

```
cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3
cp iegd.4.gz /usr/share/man/man4
```

10. Execute the following commands:

```
cd IEGD_10_3_1_Linux/IKM
./install.sh
(Nota: if a permissions error is displayed, do a chmod +x install.sh)
modprobe iegd_mod
```

11. Modify your xorg.conf file to include a device section for this driver and a Monitor section for your display. See Section 7.6.1, "Configuration Overview" on page 179 for details on the driver configuration and the list of supported options. The default installation location for this file is /etc/X11.

12. Reboot
7.3.3 Installing Fedora 10

To install the IEGD v10.3.1 on Fedora 10, follow the following steps:

- "Installation Steps"
- "OpenGL Installation"

**Note:**

Before installing Fedora, determine whether you need to do either or all of the following:

- Disable SELinux security to allow the IEGD driver to load. To disable it, use the Security application in X. If you do not disable SELinux security, you will need to configure SELinux to allow IEGD to operate.
- Disable AIGLX because IEGD does not support or work with it. To disable AIGLX, add the `Option "AIGLX" "FALSE"` command to the `xorg.conf` file in the ServerFlags section.

**Notes:**

There are known bugs in the X.org X-Server 1.5.3 version used by Fedora 10. The bugs affect OpenGL applications.

Without applying the work-around below, many OpenGL applications will not display properly and display only a blank (black) window.

A simple workaround, described below, is needed for distributions using a 1.5.x version of the X-Server, however it does not apply to 1.6.0 version of the X-Server.

**Workaround for AIGLX and X-Server version 1.5.x**

**Note:**

This workaround applies to the two previous bullets above.

In the `xorg.conf` file, set the "GlxVisuals" option to "all." This goes in the ServerFlags section of the file, as shown in the following example:

```plaintext
Section "ServerFlags"
 Option "Xinerama" "false"
 Option "AllowMouseOpenFail" "1"
 Option "BlankTime" "0"
 ...
 Option "AIGLX" "false"
 Option "GlxVisuals" "all"
EndSection
```

**Installation Steps**

1. Log into a system administration account.
2. Untar the driver package to a convenient location.

```plaintext
tar -xvzf <driver package.tgz>
```

This creates a directory structure in the directory where you extracted the .tgz file and contains the following directories:

- IEGD 10 3 1 Linux - Contains the Documents, Driver, License, IKM, and Utilities subdirectories.
  - The Driver directory contains subdirectories for the supported versions of the X.org X-Servers. This directory contains man pages for IEGD.
  - The Documents directory contains the release notes.
  - The License directory contains the license for the IEGD release.
Installing and Configuring Linux® OS Drivers

The Utilities directory contains IEGD utilities, including the iegdgui runtime configuration utility.

The IKM directory contains files for patching the Linux kernel AGPGART module.

3. Check the version of the X-Server your system is running. Type the following command:

   X -version

   Note: For Fedora 10, the result from this command is 1.5.3.

4. Copy the IEGD driver binary, iegd_drv.o (or iegd_drv.so), from the
   IEGD_10_3_1_Linux/driver/<xserver name> directory to the X-Server's
   modules/drivers directory.
   For F10 (X-Server 1.5.3 based distribution), the default location is /usr/lib/
   xorg/modules. This location can vary by distribution so check your system for the
   proper path.
   cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.5.3
   cp iegd_drv.so /usr/lib/xorg/modules/drivers

5. Copy the necessary port driver files (*.so files in the IEGD_10_3_1_Linux/
   driver/<xserver name> directory) to the X-Server lib/modules directory.
   The default installation location is /usr/lib/xorg/modules. This location can vary,
   so check your system for the proper path. After the required port drivers have
   been copied, you can specify them in the PortDrivers option in the Device section of
   the config file. For more information on specifying the PortDrivers option, refer to
   Table 44, "Supported Driver Options" on page 187. For example, to copy all the
   port drivers use the following command:
   cp *.so /usr/lib/xorg/modules

6. Copy the escape control library libXiegd_escape.so.2.0.0 from the
   IEGD_10_3_1_Linux/driver/<xserver name> directory to the X-Server
   library directory. The default installation location is /usr/lib. For example,
   cp libXiegd_escape.so.2.0.0 /usr/lib

7. In the X-Server library directory, create symbolic links for the escape library
   aliases:
   cd /usr/lib
   ln -svf libXiegd_escape.so.2.0.0 libXiegd_escape.so
   ln -svf libXiegd_escape.so.2.0.0 libXiegd_escape.so.2
   ldconfig

8. Install IKM and add the Xorg file:
   cd IEGD_10_3_1_Linux/IKM
   ./install.sh
   (Note: if a permissions error is displayed, do a chmod +x install.sh)
   Answer y to question
   depmod -a
   modprobe iegd_mod

9. From the X-Server directory you are using, unzip the iegd.4.gz file and copy the
   driver man page, iegd.4, to the man/man4 directory. The default installation
   location is /usr/share/man/man4. This location can vary by distribution so
   check your system for the proper path. For example, for Fedora 10,
   cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.5.3
   cp iegd.4.gz /usr/share/man/man4
   cp iegd_escape.3x.gz /usr/share/man/man3x

10. Reboot.
OpenGL Installation

If you want to install OpenGL, use the following instructions.

1. Set up the required share libraries for OGL/ES:
   
   ```
 cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.5.3
 cp -v iegd_dri.so /usr/lib/dri
   ```

   Use one of the commands below depending on your chipset:
   
   ```
 cp -v libGL_ga.so.1.2 libGL.so.1.2 (for US15W chipset)
 cp -v libGLgn3.so libGL.so.1.2 (for 910/915/94 chipsets)
 cp -v libGLgn4.so libGL.so.1.2 (for 965/GM45 chipsets)
   ```

   ```
 cp -v libGL.so.1.2 /usr/lib/libGL.so.1.2
 cd /etc/X11
   ```

2. Edit the `xorg.conf` file and add this parameter in the ServerFlags section:
   ```
 Option "GlxVisuals" "All"
   ```

3. In the X-Server library directory, create symbolic links for the escape library aliases:
   ```
 cd /usr/lib
 ln -sfv /usr/lib/libGL.so.1.2 libGL.so
 ln -sfv /usr/lib/libGL.so.1.2 libGL.so.1
 cd /lib
 ln -sfv libexpat.so.1.5.2 libexpat.so.0
 ldconfig
   ```

4. Reboot

5. After reboot:
   a. `export LIBGL_DEBUG=VERBOSE`
   b. `glxinfo`
      The result of this command provides information about the OpenGL environment.
   c. `glxgears`
      The result of this command displays spinning gears

7.3.4 Installing Wind River Linux Platform for Infotainment

To set up Wind River Linux Platform for Infotainment for use with the IEGD drivers, complete the following tasks:

- Install the IEGD Driver (see below)
- Install Helix (see page 158)
- Install the codecs (see page 158)
7.3.4.1 Installing the IEGD Driver

1. Untar the driver package to a convenient location.
   
   ```bash
 tar -xvf <driver package.tgz>
   ```

   This creates a directory structure in the directory where you extracted the .tgz file and contains the following directories:

   - **IEGD 10_3_1 Linux** - Contains the Documents, Driver, License, IKM, and Utilities subdirectories.
     
     The Documents subdirectory contains the `Xorg.xserver-x.x` subdirectory. This directory also contains man pages for the IEGD.
     
     The Driver directory contains subdirectories for the supported versions of the Xorg X servers.
     
     The Utilities directory contains IEGD utilities, including the `iegdgui` runtime configuration utility.

2. Copy the driver files to the correct location:
   
   ```bash
 cp iegd_drv.so /usr/lib/xorg/modules/drivers
 cp iegd_drv_video.so /usr/lib/xorg/modules/drivers
 cp iegd_drv.so /usr/X11R6/lib/modules/dri
 cp iegd_drv_video.so /usr/X11R6/lib/modules/dri
 cp lvds.so /usr/lib/xorg/modules
 cp sdvo.so /usr/lib/xorg/modules
 cp libXiegd_escape.so.2.0.0 /usr/lib
   ```

3. Link the IEGD escape library:
   
   ```bash
 ln -s /usr/lib/libXiegd_escape.so.2.0.0 /usr/lib/libXiegd_escape.so.2
 ln -s /usr/lib/libXiegd_escape.so.2.0.0 /usr/lib/libXiegd_escape.so
   ```

4. Copy the 3D driver to the correct locations:
   
   ```bash
 cp iegd_dri.so /usr/lib/dri
 cp iegd_dri.so /usr/X11R6/lib/dri
 cp libGL_ga.so.1.2 /usr/lib
   ```

5. Link the libGL library:
   
   ```bash
 ln -s /usr/lib/libGL_ga.so.1.2 /usr/lib/libGL.so.1.2
 ln -s /usr/lib/libGL_ga.so.1.2 /usr/lib/libGL.so.1
 ln -s /usr/lib/libGL_ga.so.1.2 /usr/lib/libGL.so
   ```

6. Copy the video driver binary to the correct location:
   
   ```bash
 cp libva.so.0.29.0 /usr/lib
   ```

7. Link the video library files:
   
   ```bash
 ln -s /usr/lib/libva.so.0.29.0 /usr/lib/libva.so.0
 ln -s /usr/lib/libva.so.0.29.0 /usr/lib/libva.so
   ```

8. Install the IKM:
   
   ```bash
 cd /root/release/IEGD_10_3_1_Linux/IKM
 ARCH=i386 ./install.sh
   ```

9. Start X-Server after the IKM installation:
   
   ```bash
 modprobe drm
 insmod iegd_mod.ko
 startx
   ```
7.3.4.2 Installing Helix

1. mkdir /usr/lib/helix
2. cd /usr/lib/helix
3. tar -xvzf <your path>/splay-plugin-atlas-01.2.0.tgz

7.3.4.3 Installing Codecs

To install the codecs first you must have sharutils.

1. Get sharutils:
   
   ```bash
 apt-get install sharutils
 tar -xvzf menlow_codec_1.8.8.22.tar.gz
 ./menlow_codec_1.8.8.22.shar
 tar cvfz menlow_codec.tgz *.so
   ```

2. Install the codecs:
   
   ```bash
 cd /usr/lib/helix/splay
 mkdir bkup
 cd bkup
 mv /usr/lib/helix/splay/mpgfformat.so .
 mv /usr/lib/helix/splay/mp4vrender.so
 cd ..
 cp /<from_your_tar_menlow_codec>/libipp_hx*.so .
   ```

7.3.5 Installing Red Hat Embedded (for Intel® US15W/US15WP/WPT only)

Embedded versions of Linux® often use a "build system" to create the IEGD Kernel object (kernel module) used by the Red Hat Embedded (RHE) targeted system. The build system should consist of the standard Fedora 7 OS at the very minimum.

7.3.5.1 Creating the IEGD Kernel Module

To create the IEGD Kernel object (kernel module) on a Fedora 7 build system, perform the following steps.

1. Download and install the kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm package on the build system.
   
   a. Get kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm from Red Hat (or from RHE CD) and download to the build system.

   b. `rpm -i --force kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm`

2. Download and extract (but do not install) the IEGD v10.3.1 tarball (iegd_10_3_1_Linux.tgz) on the build system.
   
   a. Create IEGD v10.3.1 tarball from the CED tool and download it to the build system.

   b. Extract IEGD v10.3.1 tarball for creating the kernel object (kernel module):
       
       ```bash
 mkdir /tmp/iegd_10_3_1
 cp iegd_10_3_1.tgz /tmp/iegd_10_3_1
 cd /tmp/iegd_10_3_1
 tar -xvzf IEGD_10_3_1_Linux.tgz
       ```
3. Create IEGD v10.3.1 kernel object (kernel module) on the build system:
   a. (Optional)
      The build will fail unless the following patch is applied to the sources. The
      `linux/config.h` file does not exist on kernels after 2.6.19.
      
      ```diff
 diff -rup a/IEGD_10_3_1_Linux/IKM/drm/iegd_drv.c
 b/IEGD_10_3_1_Linux/IKM/drm/iegd_drv.c
 --- a/IEGD_10_3_1_Linux/IKM/drm/iegd_drv.c 2008-05-19
 00:09:07.000000000 -0400
 +++ b/IEGD_10_3_1_Linux/IKM/drm/iegd_drv.c 2008-06-19
 23:50:47.000000000 -0400
 @@ -50,7 +50,6 @@
 */

 #include <linux/config.h>
 #include "iegd.h"
 #include <drmP.h>
 #include <drm.h>

 b. Change to the IKM directory:
 `cd /tmp/iegd_10_3_1_Linux/IKM/`

 c. Set the `KERNELDIR` environment variable used by the IEGD kernel object build script:
 `export KERNELDIR=/usr/src/kernels/2.6.23.15-80.fc7.cb.4-i686`

 d. Run IEGD kernel object build script (IKM Patch Instructions)
 `./install.sh`
 (Note: if a permissions error is displayed, do a `chmod +x install.sh`)

 The result is a kernel object (kernel module) file, `iegd_mod.ko`, used on the
 RHE target system.

 e. Copy `iegd_mod.ko` to the network or USB for installing onto RHE target
 system.

7.3.5.2 Installing IEGD on a Red Hat Embedded System

To install IEGD v10.3.1 on a RHE “target system” perform the following steps:

1. Install the latest US15W RHE on the target system. Example:
 b. Create a CDROM from `cb-7-i386-CD.iso`.
 c. Boot up CDROM of `cb-7-i386-CD.iso` image on the target system (may
 require BIOS configuration to boot from CD) and installed default, Kickstart
 menu option. The system reboots (may require BIOS configuration to boot from
 the hard drive).

 Note: The Kickstart `ks.cfg` file is expecting to have a PATA drive with a name of CDROM. If
 that is not present, you must determine the name of your drive and use that name
 instead.
 d. If prompted for a password, log in with the password `redhat`.
e. Install `kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm` package:
 1) Get `kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm` from Red Hat and
download it to the target system.
 2) `rpm -i --force kernel-devel-2.6.23.15-80.fc7.cb.4.i686.rpm`

2. Install IEGD v10.3.1 on the target system.
 a. Use CED to create an IEGD Linux* installation including an example IEGD
configuration that is added to your existing xorg.conf file.
 b. Download and extract IEGD v10.3.1 tarball:
      ```
      tar -xvzf <driver package>.tgz
      ```
 where `<driver package>` is replaced with the actual name, for example,
 IEGD_10_3_1_Linux.
 c. Apply the recommended section of the sample IEGD conf file to your target
xorg.conf file. See Section 7.6.1, "Configuration Overview" on page 179 for
details on the driver configuration and the list of supported options.
 d. Change directory to `Xorg-xserver-1.3`.
      ```
      cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3
      ```
 e. Copy the necessary port driver files (`*.so` files in the `IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3` directory) to the X-Server
`lib/modules` directory. The default installation location is `/usr/lib/xorg/modules`.
      ```
      cp *.so /usr/lib/xorg/modules
      cp iegd_drv.so /usr/lib/xorg/modules/drivers
      ```
 f. Copy the escape control library `libXiegd_escape.so.2.0.0` from the
IEGD_10_3_1_Linux/driver/<xserver name> directory to the X-Server
library directory. The default installation location is `/usr/lib`. For example,
      ```
      cp libXiegd_escape.so.2.0.0 /usr/lib
      ```
 g. In the X-Server library directory, create symbolic links for the escape library
aliases:
      ```
      cd /usr/lib
      ln -sv libXiegd_escape.so.2.0.0 libXiegd_escape.so
      ln -sv libXiegd_escape.so.2.0.0 libXiegd_escape.so.2
      ```
 h. Copy the IEGD DRI module:
      ```
      cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3
      mkdir /usr/lib/dri
      chmod 775 /usr/lib/dri
      cp iegd_dri.so /usr/lib/dri
      ```
 i. Copy and enable the IEGD Video Library:
      ```
      cp iegd_drv_video.so /usr/lib/xorg/modules/drivers
      cp libva.so.0.29.0 /usr/lib
      ```
      ```
      cd /usr/lib
      ln -s libva.so.0.29.0 libva.so
      ln -s libva.so.0.29.0 libva.so.0
      ```
      ```
      export LIBVA_DRIVERS_PATH=/usr/lib/xorg/modules/drivers/
      ```
      ```
      ldconfig
Installing and Configuring Linux* OS Drivers

j. From the IEGD_10_3_1_Linux/Documents directory, copy the driver man page, iegd.4, to the man/man4 directory. The default installation location is /usr/share/man/man4. This location can vary by distribution so check your system for the proper path. For example:

   cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.3
   cp iegd.4.gz /usr/share/man/man4

k. Copy the previously built IEGD v10.3.1 kernel object (kernel module), iegd_mod.ko, into kernel library modules:

   1) cd IEGD_10_3_1_Linux/IKM
   2) ./install.sh rhe
   3) Answer "y" followed by <Enter> when prompted.
   4) cp iegd_mod.ko /lib/modules/2.6.23.15-80.fc7.cb.4.i686/kernel/drivers/char/drm/
   5) depmod –a
   6) modprobe drm
   7) modprobe iegd_mod

Note: If the modprobe does not work, insert the module using the command

   insmod iegd_mod.ko

l. Restart the system and start up X.

Note: For video playback, you may need to install Helix (see page 169) and the Intel US15W codecs, which are available as a separate download under evaluation license only.

7.3.5.3 Installing Codecs

- UMG Codecs: 1.8.8.22 (contact your Intel representative for the file)

- To install Intel Media Codec use the following commands:

   tar –zxvf menlow_codec_1[1].8.8.22.tar.gz
   cp *.so /usr/lib/helix/splay
   rm /usr/lib/helix/splay/mpgfformat.so
   rm /usr/lib/helix/splay/h264dec.so
   rm /usr/lib/helix/splay/mp4vrender.so
   rm /usr/lib/helix/splay/wmvrender.so
   rm /usr/lib/helix/splay/wmv9.so

7.3.6 Installing Ubuntu IEGD Driver and Codec (for Intel® US15W/US15WP/WPT only)

To set up Ubuntu for use with the IEGD drivers, complete the following tasks:

- Install the Ubuntu operating system (see below)
- Install the IEGD driver (see page 167)
- Install the Helix DBus Server (see page 169)
7.3.6.1 Installing the Ubuntu OS


2. Set up a system (Intel® Atom™ or other IA platform) that runs with Ubuntu OS (Desktop). Make sure your system is able to connect to the Internet.

3. Connect two hard drives to your system, a primary drive for the Ubuntu desktop (login as root or use sudo wherever possible) and a secondary, empty hard drive which will be used for a clean Ubuntu MID OS setup.

4. Boot up your system and copy the Ubuntu package to your system root directory.

5. Format the root and swap partitions for second hard drive:

<table>
<thead>
<tr>
<th>Device</th>
<th>Boot</th>
<th>Start</th>
<th>End</th>
<th>Blocks</th>
<th>Id</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/sdb1</td>
<td>*</td>
<td>1</td>
<td>30269</td>
<td>243135711</td>
<td>83</td>
<td>Linux</td>
</tr>
<tr>
<td>/dev/sdb2</td>
<td></td>
<td>30270</td>
<td>30401</td>
<td>1060290</td>
<td>82</td>
<td>Linux swap / Solaris</td>
</tr>
</tbody>
</table>

6. Create primary partition and swap for your second hard disk:

   mke2fs -jv /dev/sdb1
   mkswap /dev/sdb2
   mkdir /v
   mount /dev/sdb1 /v

7. Extract the project directory:

   (cd /v; tar -jxpv --strip 1 -f - project/) < mid-8.04.1-menlow.mic.tar.bz2.tar

8. Chroot to the new file system on your second hard drive:

   chroot /v /bin/bash
   HOME=/root
   mount -t proc none /proc
   mount -t sysfs none /sys
   mount -t devpts none /dev/pts

9. Set up the network where the <Name-server-IP-address> and <your proxy settings here> will vary for different networks:

   cat > /etc/resolv.conf <<RESOLV_CONF
   search <domain.com>
   nameserver <Name-server-IP-address>
   RESOLV_CONF
   export http_proxy=<your proxy settings here>

10. Add source repository:

    cat > /etc/apt/sources.list <<SOURCES_LIST
    deb http://ports.ubuntu.com/ubuntu-ports hardy main restricted universe multiverse
daeb-src http://ports.ubuntu.com/ubuntu-ports hardy main restricted universe multiverse
daeb http://ports.ubuntu.com/ubuntu-ports hardy-updates main restricted universe multiverse
daeb-src http://ports.ubuntu.com/ubuntu-ports hardy-updates main restricted universe multiverse
daeb http://ppa.launchpad.net/ubuntu-mobile/ubuntu hardy main
daeb-src http://ppa.launchpad.net/ubuntu-mobile/ubuntu hardy main SOURCES_LIST
11. Update and download with kernel source package. Ignore the NO_PUBKEY error encountered after you are finished with the update.
   apt-get update
   apt-get install --reinstall language-pack-en
   cd /usr/src
   apt-get build-dep linux-image-2.6.24-19-lpia
   apt-get source --compile linux-image-2.6.24-19-lpia

12. To allow the make operation to complete faster, execute the following command at command line:
    export CONCURRENCY_LEVEL=<processors + 1>

    where <processors + 1> is the number of processors available on your system plus 1. For example, the command for the Intel® Atom™ Processor Z530 would be
    export CONCURRENCY_LEVEL=3.

    Note: The CONCURRENCY_LEVEL value should be one greater than the number of processors available on your system.

13. To create the kernel.config file, execute the following command at the command line:
    make oldconfig

14. Build the kernel:
    mkdir /usr/src/frame
    cd /usr/src/frame
    (cd /usr/src/linux-2.6.24/debian/build; tar cf - custom-source-lpia) | tar xpf -
    mv custom-source-lpia linux-2.6.24.3
    cd linux-2.6.24.3

15. Make sure to edit following sections in your kernel.config.

    #
    # Protocols
    #
    CONFIG_PNPACPI=y
    CONFIG_BLK_DEV=y
    # CONFIG_BLK_DEV_FD is not set
    # CONFIG_BLK_CPQ_DA is not set
    # CONFIG_BLK_CPQ_CISSL_DA is not set
    # CONFIG_BLK_DEV_DAC960 is not set
    # CONFIG_BLK_DEV_UMEM is not set
    # CONFIG_BLK_DEV_COW_COMMON is not set
    # CONFIG_BLK_DEV_LOOP is not set
    # CONFIG_BLK_DEV_NBD is not set
    # CONFIG_BLK_DEV_SX8 is not set
    # CONFIG_BLK_DEV_UB is not set
    # CONFIG_BLK_DEV_RAM is not set
    # CONFIG_CDROM_PKTCDVD is not set
    # CONFIG_ATA_OVER_ETH is not set
    # CONFIG_MISC_DEVICES is not set
    # CONFIG_IDE is not set

    ...


SCSI device support

- CONFIG_RAID_ATTRS is not set
  CONFIG_SCSI=y
  CONFIG_SCSI_DMA=y

- CONFIG_SCSI_TGT is not set
  CONFIG_SCSI_NETLINK is not set
  CONFIG_SCSI_PROC_FS=y

...

SCSI support type (disk, tape, CD-ROM)

- CONFIG_BLK_DEV_SD=y

- CONFIG_CHR_DEV_ST is not set
  CONFIG_CHR_DEV_OSt is not set
  CONFIG_BLK_DEV_SR is not set
  CONFIG_CHR_DEV_SG=y

- CONFIG_CHR_DEV_SCH is not set

...

Some SCSI devices (e.g. CD jukebox) support multiple LUNs

- CONFIG_SCSI_MULTI_LUN=y
  CONFIG_SCSI_CONSTANTS=y
  CONFIG_SCSI_LOGGING=y

- CONFIG_SCSI_SCAN_ASYNC is not set
  CONFIG_SCSI_WAIT_SCAN=m

...

SCSI Transports

- CONFIG_SCSI_SPI_ATTRS is not set
  CONFIG_SCSI_FC_ATTRS is not set
  CONFIG_SCSI_ISCSI_ATTRS is not set
  CONFIG_SCSI_SAS_LIBSAS is not set
  CONFIG_SCSI_SRP_ATTRS is not set
  CONFIG_SCSI_LOWLEVEL is not set
  CONFIG_ATA=y

- CONFIG_ATA_NONSTANDARD is not set
  CONFIG_ATA_ACPi=y

- CONFIG_SATA_AHCI is not set
# CONFIG_SATA_SVW is not set
CONFIG_ATA_PIIX=y
# CONFIG_SATA_MV is not set
# CONFIG_SATA_NV is not set
# CONFIG_PDC_ADMA is not set
# CONFIG_SATA_QSTOR is not set
# CONFIG_SATA_PROMISE is not set
# CONFIG_SATA_SX4 is not set
# CONFIG_SATA_SIL is not set
# CONFIG_SATA_SIL24 is not set
# CONFIG_SATA_SIS is not set
# CONFIG_SATA_ULI is not set
# CONFIG_SATA_VIA is not set
# CONFIG_SATA_VITESSE is not set
# CONFIG_SATA_INIC162X is not set
CONFIG_PATA_ACPI=y
# CONFIG_PATA_ALI is not set
# CONFIG_PATA_AMD is not set
# CONFIG_PATA_ARTOP is not set
# CONFIG_PATA_ATIIXF is not set
# CONFIG_PATA_CMD640_PCI is not set
# CONFIG_PATA_CMD64X is not set
# CONFIG_PATA_CS5520 is not set
# CONFIG_PATA_CS5530 is not set
# CONFIG_PATA_CS5535 is not set
# CONFIG_PATA_CS5536 is not set
# CONFIG_PATA_CYPRESS is not set
# CONFIG_PATA_EFAR is not set
CONFIG_ATA_GENERIC=y
# CONFIG_PATA_HPT366 is not set
# CONFIG_PATA_HPT37X is not set
# CONFIG_PATA_HPT3X2N is not set
# CONFIG_PATA_HPT3X3 is not set
# CONFIG_PATA_IT821X is not set
# CONFIG_PATA_IT8213 is not set
# CONFIG_PATA_JMICRON is not set
# CONFIG_PATA_TRIFLEX is not set
# CONFIG_PATA_MARVELL is not set
CONFIG_PATA_MPIIX=y
# CONFIG_PATA_OLDPIIX is not set
# CONFIG_PATA_NETCELL is not set
# CONFIG_PATA_NS87410 is not set
# CONFIG_PATA_NS87415 is not set
# CONFIG_PATA_OPTI is not set
# CONFIG_PATA_OPTIDMA is not set
# CONFIG_PATA_PDC_OLD is not set
# CONFIG_PATA_RADISYS is not set
# CONFIG_PATA_RZ1000 is not set
# CONFIG_PATA_SC1200 is not set
# CONFIG_PATA_SERVERWORKS is not set
# CONFIG_PATA_PDC2027X is not set
# CONFIG_PATA_SIL680 is not set
# CONFIG_PATA_SIS is not set
# CONFIG_PATA_VIA is not set
# CONFIG_PATA_WINBOND is not set
# CONFIG_PATA_PLATFORM is not set
# CONFIG_MD is not set
# CONFIG_FUSION is not set

# Graphics support
CONFIG_AGP=m
# CONFIG_AGP_ALI is not set
# CONFIG_AGP_ATI is not set
# CONFIG_AGP_AMD is not set
# CONFIG_AGP_AMD64 is not set
# CONFIG_AGP_INTEL is not set
# CONFIG_AGP_NVIDIA is not set
# CONFIG_AGP_SIS is not set
# CONFIG_AGP_SWORKS is not set
# CONFIG_AGP_VIA is not set
# CONFIG_AGP_EFFICEON is not set
CONFIG_FB=y
CONFIG_FIRMWARE_EDID=y
# CONFIG_FB_DDC is not set
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
# CONFIG_FB_CFB_REV_PIXELS_IN_BYTE is not set
# CONFIG_FB_SYS_FILLRECT is not set
# CONFIG_FB_SYS_COPYAREA is not set
# CONFIG_FB_SYS_IMAGEBLIT is not set
# CONFIG_FB_SYS_FOPS is not set
CONFIG_FB_DEFERRED_IO=y
# CONFIG_FB_SVGLIB is not set
# CONFIG_FB_MACMODES is not set
# CONFIG_FB_BACKLIGHT is not set
CONFIG_FB_MODE_HELPERS=y
CONFIG_FB_TILEBLITTING=y

16. Build the kernel:
   make oldconfig
   make
   make install modules_install

17. Make sure /lib/modules/<kernel number>/kernel/drivers/char/ has
    /drm/drm.ko in it.
18. Install required packages:
   apt-get install xserver-xorg
   apt-get install xorg
   apt-get install mesa-utils

   **Note:** If you want to install additional packages, go to http://packages.ubuntu.com/hardy/ to see the names of the packages and their utilities.

19. Exit the chroot environment and install grub:
   ```
 exit
 sudo mkdir /v/boot/grub
 cat > /v/boot/grub/menu.lst <<MENU_LST
 default 0
 timeout 5
 #hiddenmenu
 color cyan/blue white/blue
 title Ubuntu 8.04.1, kernel 2.6.24-19-lpia (multi user)
 root /dev/sda1
 kernel /boot/vmlinuz-2.6.24.6 root=/dev/sda1 ro
 MENU_LST
 grub-install --root-directory=/v /dev/sdb
   ```

20. Shut down the system. The second hard drive should now have the bootable OS. Connect this hard drive to a Eurotech/CrownBeach Board or other US15W system with PATA interface. Proceed to the driver installation section.

### 7.3.6.2 Installing the IEGD Driver for Ubuntu

**Platform:** Intel® Atom™

**System Memory:** 1Gb DDR2 533 MHz

**Video Memory:** 8 Mbytes Stolen Memory, 256 Mbytes Aperture Memory (Support from ECG BIOS version 0.17 and above)

**Display Interface:** CRT (1400x1050)

**OS:** Ubuntu 8.04.1 Hardy

**X-Window:** Xorg-server 1.4.1

**Kernel:** 2.6.24.3

**Software Required:**
- Driver: the latest IEGD driver
- Helix: splay-plugin-atlas-01.2.0
  (Download from https://helix-client.helixcommunity.org/Releases)
- UMG Codecs: 1.8.8.22 (contact your Intel representative for the file)
Installation Steps

1. Make sure the software listed above is on your hard drive before proceeding to the next step.

2. Boot up the target Intel® Atom™ system.
   You will see the fastar login prompt. Just log in as root and no password is required.

3. Refer to “Editing the Linux* OS Configuration File Directly” on page 180 to edit /etc/X11/xorg.conf file to work with IEGD.

4. Start the X server:
   
   startx

5. Copy driver binary, where <driver> is the IEGD_10_3_1_Linux/driver directory:
   
   cd <driver>/Xorg-xserver-1.4
   cp iegd_drv.so /usr/lib/xorg/modules/drivers
   cd /usr/lib
   ln –sfv libexpat.so.1.5.2 libexpat.so
   ln –sfv libexpat.so.1.5.2 libexpat.so.1
   cd <driver>/Xorg-xserver-1.4
   cp *.so /usr/lib/xorg/modules
   cp libXiegd_escape.so.2.0.0 /usr/lib
   cp libGL* /usr/lib

6. Enable DRI:
   
   mkdir /usr/lib/dri
   cp iegd_dri.so /usr/lib/dri

7. Link the library:
   
   cd /usr/lib
   ln -s libXiegd_escape.so.2.0.0 libXiegd_escape.so
   ln -s libXiegd_escape.so.2.0.0 libXiegd_escape.so.2
   ln -sfv libGL_ga.so.1.2 libGL.so
   ln -sfv libGL_ga.so.1.2 libGL.so.1
   ln -sfv libexpat.so.1.5.2 libexpat.so.0

8. Perform patching:
   
   cd <driver>/IKM
   ./install.sh

   Note: If a permissions error is displayed, do a chmod +x install.sh or try using the command
   
   sudo bash ./install/sh
   
   depmod –a
   modprobe iegd_mod
   startx

   The driver and 3D should be up and running now.

9. Make sure the installation is pointing to Tungsten and not MESA:
   
   glxinfo | grep "vendor"
   Failure on this will cause 3D and VA to fail.
7.3.6.3 Installing the Helix DBus Server

1. Get helix-dbus-server-src-0.6.0.tgz from the Helix community release link at https://helix-client.helixcommunity.org/Releases. Untar and build according to the README file.

2. Install:
   `cd player/dbus-server`
   `./dist --prefix=/usr prepare`
   `./dist install helix-dbus-server`

   *Note:* If you do not install splay to /usr/lib/helix/splay, you should export HELIX_LIBS to the path of splay.

3. Install Helix Framework:
   `cd <Folder contain Helix Package>`
   `tar –zxvf splay-plugin-atlas-01.2.0.tgz`
   `cd splay`
   `cp *.* /usr/lib/helix/splay`

4. Install Intel Media Codec:
   `tar –zxvf menlow_codec_1[1].8.8.22.tar.gz`
   `cp *.so /usr/lib/helix/splay`
   `rm /usr/lib/helix/splay/mpgfformat.so`
   `rm /usr/lib/helix/splay/h264dec.so`
   `rm /usr/lib/helix/splay/mp4vrender.so`
   `rm /usr/lib/helix/splay/wmvrender.so`
   `rm /usr/lib/helix/splay/wmv9.so`

5. Enable Video Decode:
   `cd <driver>/Xorg-xserver1.4`
   `cp libva.so.0.29.0 /usr/lib`
   `cp iegd_drv_video.so /usr/lib/xorg/modules/drivers`
   `cd /usr/lib`
   `ln -s libva.so.0.29.0 libva.so`
   `ln -s libva.so.0.29.0 libva.so.0`
   `export LIBVA_DRIVERS_PATH=/usr/lib/xorg/modules/drivers/`

6. Get the WMV Codec File from Helix Windows Media Integration Project and copy over to splay folder. Without this step, all WMV cannot play.
   `cp *.so /usr/lib/helix/splay`

7. Play Video:
   `cd /usr/lib/helix/splay`
   `./splay /<infile>/movie/VA/Clips/10KBC.mov`
   where `<infile>` is the local path to the media file to be played.
7.3.7 Installing Moblin 2.1 IVI (for Intel® US15W only)

There are two ways to get IEGD on Moblin:

- Install the pre-integrated Moblin image (see Section 7.3.7.1)
- OR
- Manually install IEGD on Moblin by doing the following:
  - “Preparing for the Intel Embedded Graphics Driver Installation”
  - “Installing the Intel Embedded Graphics Driver (IEGD) for Moblin 2.1”

7.3.7.1 Install the Pre-integrated Moblin Image

1. Download the pre-integrated Moblin image from the moblin.org site at http://moblin.org/projects/ivi
2. Follow the installation directions at moblin.org to create a live USB flash image and install on a hard disk.

7.3.7.2 Manually Installing IEGD

1. Download and install the standalone Moblin image with open source VESA driver. This image is available from Moblin.org at: http://moblin.org/projects/2.1-ivi-fc-release.
2. Follow the installation directions at moblin.org to create a live USB flash image and install on a hard disk.

7.3.7.3 Preparing for the Intel Embedded Graphics Driver Installation

Proceed with the following installation steps.

1. Log in as SuperUser.
2. Edit grub.conf and comment out the line with splash screen:
   ```
 vi /boot/grub/grub.conf
   ```
   This step is recommended so that the system can be debugged instead of remaining stuck at the splash screen or blank screen.
3. Edit the inittab file using the following command and change the default value from 5 to 3:
   ```
 vi /etc/inittab
   ```
Installing the Intel Embedded Graphics Driver (IEGD) for Moblin 2.1

1. Untar the driver package to a convenient location using the following command:

   ```bash
tar -xvzf <driver package.tgz>
 ``

 This creates a directory structure in the directory where you extracted the .tgz file. It contains the following directories:

 - **IEGD 10_3_1_Linux** - Contains the Documents, Driver, License, IKM, and Utilities subdirectories.
 - The **Documents** subdirectory contains the release notes for IEGD.
 - The **Driver** directory contains subdirectories for the supported versions of the X.org X-Servers.
 - The **License** directory contains the license for the IEGD release.
 - The **Utilities** directory contains IEGD utilities, including the iegdgui runtime configuration utility.
 - The **IKM** directory contains files for patching the Linux kernel AGPGART module.

2. Verify the version of the X-Server your system is running using the following command:

   ```bash
   X -version
   ``

   **Note:** For Moblin 2.1, the result from this command should be 1.6.4.901.

3. Copy the IEGD driver binary, `iegd_drv.o` (or `iegd_drv.so`), from the `IEGD_10_3_1_Linux/driver/` directory to the X-Server’s `modules/drivers` directory using the commands below. For Moblin 2.1 (X-Server 1.6-based distribution), the default location is `/usr/lib/xorg/modules/drivers`.

   **Note:** The default location can vary by distribution so check your system for the proper path.

   ```bash
cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.6.4.901
cp iegd_drv.so /usr/lib/xorg/modules/drivers
cp iegd_drv_video.so /usr/lib/xorg/modules/drivers
cp lvds.so /usr/lib/xorg/modules
cp sdvo.so /usr/lib/xorg/modules

cp iegd_dri.so /usr/lib/dri
cp libGL_ga.so.1.2 /usr/lib

cp libva.so.0.29.0 /usr/lib
cp libXiegd_escape.so.2.0.0 /usr/lib

cp libEGL.so.1.0 /usr/lib
cp libGLESv1_CM.so.1.1.0 /usr/lib
cp libGLESv2.so.2.0.0 /usr/lib
cp egl_xdri.so /usr/lib
cp egl_iegd_dri.so /usr/lib/dri
```
4. In the lib directory, create symbolic links for the following aliases:

   cd /usr/lib

   ln -sfv libXiegd_escape.so.2.0.0 libXiegd_escape.so
   ln -sfv libXiegd_escape.so.2.0.0 libXiegd_escape.so.2

   ln -sfv libva.so.0.29.0 libva.so.0.29
   ln -sfv libva.so.0.29.0 libva.so.0
   ln -sfv libva.so.0.29.0 libva.so

   ln -sfv libGL_ga.so.1.2 libGL.so
   ln -sfv libGL_ga.so.1.2 libGL.so.1
   ln -sfv libGL_ga.so.1.2 libGL.so.1.2

   ln -sfv libEGL.so.1.0 libEGL.so
   ln -sfv libEGL.so.1.0 libEGL.so.1

   ln -sfv libGLESv1_CM.so.1.1.0 libGLESv1_CM.so.1
   ln -sfv libGLESv1_CM.so.1.1.0 libGLESv1_CM.so
   ln -sfv libGLESv2.so.2.0.0 libGLESv2.so.2.0
   ln -sfv libGLESv2.so.2.0.0 libGLESv2.so.2
   ln -sfv libGLESv2.so.2.0.0 libGLESv2.so

   cd /lib

   ln -sfv libexpat.so.1.5.2 libexpat.so.0
   ldconfig

   Note: If an error is displayed, “command not found” then use /sbin/ldconfig in place of the
   ldconfig command above.

5. Execute the following commands:

   cd IEGD_10_3_1_Linux/IKM
   ./install.sh

   Note: If a permissions error is displayed, do a chmod +x install.sh or try using the command
   sudo bash ./install.sh
   modprobe iegd_mod

   Note: If an error is displayed, “command not found” then use /sbin/modprobe iegd_mod
   in place of the command above.

6. Modify your xorg.conf file to include a device section for this driver and a monitor
   section for your display.

   The default installation location for this file is /etc/X11.

   Note: You need to use the Configuration EDitor tool (CED) to create an IEGD compatible
   xorg.conf file that correctly uses IEGD as the driver and sets the IEGD configuration
   properly. See “Platform Configuration Using CED” on page 29 for details.

7. Reboot.
7.3.7.5 Known Issues

If you encounter text corruption, please set your default color depth to 24-bit in the screen section in the Xorg.conf. See “Screen Section” on page 185 for details.

7.4 IKM Patch Instructions

The IKM process is designed to replace the need to patch your kernel GART and DRM.

See also the following topics:

- “Finding and Installing the Kernel Source (Headers)”
- “Installing IKM with Fedora”
- “Using the IEGD Kernel Module”
- “Linux Installer IKM Validation”
- “Uninstalling the IKM”

7.4.1 Finding and Installing the Kernel Source (Headers)

- Building the IKM requires kernel headers and the kernel config file for the kernel the IKM will be created for.
- KERNEL_VERSION is the output of the command `uname -r`
- If you use a kernel from your distribution you will typically have a package with all the files required to build kernel modules for your kernel image.
  - On Fedora and compatibles (e.g., Red Hat) this is the `kernel-devel` package.
  - Or if you run `kernel-smp` or `kernel-xen`, you need `kernel-smp-devel` or `kernel-xen-devel`, respectively.
  - In some distributions (e.g., in RHEL or Fedora) the installation of the `kernel-devel/kernel-headers` package will be a newer version than the one you currently run. In such a case, you may need to upgrade the kernel package itself and reboot.

7.4.2 Installing IKM with Fedora

This section can be used if you are trying to get a non-supported LINUX distribution running with IKM. Fedora 10 is not supported for these instructions.

1. Install `kernel-$ARCH-devel`. The version of the package must be the same as the running kernel. Replace `$ARCH` with architecture of the kernel (e.g., smp).
2. Install `Kernel-devel` from the CD/DVD or through the `yum` utility.
3. Install the kernel source for the version you are running by choosing one of the following methods.
   - If you are using a CD or DVD, search for the rpm package for `kernel-$ARCH-devel` and install using
     `rpm -ivh kernel-$ARCH-devel`
   - For the `yum` utility, type the following command:
     `yum install kernel-devel`

This will install kernel-devel and resolve dependencies. Note that, as stated earlier, kernel-devel that is installed through this method might not be the same version as a running kernel. In this case IKM compilation might be successful, however, when trying to insert it to the running kernel, `modprobe/insmod` will produce an error. The solution is to upgrade the kernel-package itself and reboot to make the Linux* OS run the updated kernel.
4. Hardlink is a utility that consolidates duplicates files in one or more directories by traversing the directories and searching for duplicate files. When Hardlink finds duplicate files, it uses one of them as the master, removes all other duplicates, and places a hardlink for each one pointing to the master file.

   Download Hardlink from the Fedora site:
   http://fedora.secsup.org/linux/core/5/i386/os/Fedora/RPMS/hardlink-1.0-1.21.2.i386.rpm

5. Install Hardlink using one of the methods described below.

   — Run the following command:
     rpm -ivh hardlink-1.0-1.21.2.i386.rpm

   — Run the following command through yum utility, making sure the computer is connected to the Internet:
     yum install hardlink

   Hardlink is now installed and will resolve any dependencies.

6. Compile the module using the following commands:

   cd IEGD_10_3_1_Linux/IKM
   ./install.sh
   depmod -a
   modprobe iegd_mod

7. Modify your xorg.conf file to include a device section for this driver and a Monitor section for your display. See Section 7.6.1, “Configuration Overview” on page 179 for details on the driver configuration and the list of supported options. The default installation location for this file is /etc/X11.

8. Reboot.

   At this point, when X Windows starts, it should be using the IEGD driver. To verify this, you can check your Xorg log, or run the iegdgui utility (found in the Utilities directory).

   Note: You may need to set the iegdgui file properties to be executable before it will run.

7.4.3  Using the IEGD Kernel Module

   Note: This needs to be run after adding the IEGD components and updating the symbolic links in the Linux* OS.

   An installation script is provided to perform the installation. The script generates the Makefile together with the compilation environment for that particular kernel or distro. To install the IKM, run the shell script provided:

   cd IEGD_10_3_1_Linux/IKM
   ./install.sh

   (Note: if a permissions error is displayed, do a chmod +x install.sh)

   The installation script detects the kernel version and points to the proper header files location before creating the Makefile. The script then calls the Make program to start the compilation process. After compilation is complete, the script tries to install the IKM. If the script is run from a normal user, it prompts for the superuser password before copying the generated file and then runs a depmod -a command to resolve module dependencies.
To insert the module into the kernel, run

```
modprobe iegd_mod
```

This will load all the modules that iegd_mod depends on before loading iegd_mod itself.

IKM installation requires a matching kernel source tree and a working Linux build system. Some of the programs require some additional libraries.

### 7.4.4 Linux Installer IKM Validation

The Linux Installer also validates the IKM installation using AGP and DRM tests to verify that it is installed and working correctly, as described below.

#### 7.4.4.1 AGP Test

The AGP test opens the AGPGART component and then communicates using IOCTLs to ensure that the AGP portion of the IKM works.

You may see “Error on AGPIOC_BIND. Trying new address for bind 8000.” This is OK. The validation test is looking for unused memory. If an actual error occurs, the script test will immediately exit.

#### 7.4.4.2 DRM Test

The DRM tests work in a similar manner. It is a comprehensive set of tests to verify the functionality of all device file interfaces. The test opens the DRM and communicates using the IOCTLs to ensure that the DRM portion of the IKM works.

Compilation for AGP

```
> cd ./IEGD_10_3_1_Linux/IKM/agp
> gcc –o agp_test agp_test.c
```

Compilation for DRM

```
> cd ./IEGD_10_3_1_Linux/IKM/drm
> gcc –o drm_test drm_test.c
```

Execution

Optional parameter –v [verbose mode].

AGP

```
> ./agp_test
```

DRM

```
> ./drm_test
```

#### 7.4.4.3 Kernel Checker

The purpose of the kernel checker is to ensure that the Kernel API that IKM is dependent on exists.

When you run `install.sh` it calls the `ikmchecker.sh` which is found in the `kernelchecker_tests` folder. Next, you see the message “Checking kernel dependencies ...” and after you have executed the script there should be a `build.log` file in the `kernelchecker_tests` folder displaying the results after compilation. If there is an error there will be an error.log file in that folder and the error will be displayed in the console. The APIs that the Linux installer checks for are shown in tables 35 through 43.
### Table 35. Memory Management Functions

<table>
<thead>
<tr>
<th>S.No</th>
<th>APIS</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vfree</td>
<td>&lt;linux/vmalloc.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>kfree</td>
<td>&lt;linux/slab.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>alloc_pages</td>
<td>&lt;linux/gfp.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>__get_free_pages</td>
<td>&lt;linux/gfp.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>free_pages</td>
<td>&lt;linux/gfp.h&gt;</td>
</tr>
<tr>
<td>6</td>
<td>kmalloc</td>
<td>&lt;linux/slab.h&gt;</td>
</tr>
<tr>
<td>7</td>
<td>do_munmap</td>
<td>&lt;linux/mm.h&gt;</td>
</tr>
<tr>
<td>8</td>
<td>do_mmap</td>
<td>&lt;linux/mm.h&gt;</td>
</tr>
<tr>
<td>9</td>
<td>get_page</td>
<td>&lt;linux/mm.h&gt;</td>
</tr>
<tr>
<td>10</td>
<td>put_page</td>
<td>&lt;linux/mm.h&gt;</td>
</tr>
<tr>
<td>11</td>
<td>page_mapcount</td>
<td>&lt;linux/mm.h&gt;</td>
</tr>
<tr>
<td>12</td>
<td>memset</td>
<td>&lt;linux/string.h&gt;</td>
</tr>
</tbody>
</table>

### Table 36. PCI Related Routines

<table>
<thead>
<tr>
<th>S.No</th>
<th>APIS</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pci_save_state</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>pci_restore_state</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>pci_find_capability</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>pci_get_device</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>pci_dev_driver</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>6</td>
<td>pci_register_driver</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>7</td>
<td>pci_unregister_driver</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>8</td>
<td>pci_dev_put</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>9</td>
<td>pci_assign_resource</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>10</td>
<td>pci_enable_device</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>11</td>
<td>pci_read_config_dword</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>12</td>
<td>pci_set_drvdata</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>13</td>
<td>pci_read_config_word</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>14</td>
<td>pci_write_config_dword</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>15</td>
<td>pci_read_config_byte</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>16</td>
<td>PCI_FUNC</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>17</td>
<td>pci_write_config_word</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
<tr>
<td>18</td>
<td>pci_resource_start</td>
<td>&lt;linux/pci.h&gt;</td>
</tr>
</tbody>
</table>
### Table 37. I/O Functions

<table>
<thead>
<tr>
<th>S.No</th>
<th>API</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>printk</td>
<td>&lt;linux/kernel.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>readl</td>
<td>&lt;asm/io.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>writel</td>
<td>&lt;asm/io.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>readb</td>
<td>&lt;asm/io.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>lowrite32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ioread32</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>iounmap</td>
<td>&lt;asm/io.h&gt;</td>
</tr>
<tr>
<td>8</td>
<td>ioremap</td>
<td>&lt;asm/io.h&gt;</td>
</tr>
</tbody>
</table>

### Table 38. Synchronization Functions

<table>
<thead>
<tr>
<th>S.No</th>
<th>API</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>atomic_dec</td>
<td>&lt;asm/atomic.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>set_bit</td>
<td>&lt;asm/bitops.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>spin_lock_irqsave</td>
<td>&lt;linux/spinlock.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>spin_lock_irqrestore</td>
<td>&lt;linux/spinlock.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>up_write</td>
<td>&lt;linux/rwsem.h&gt;</td>
</tr>
<tr>
<td>6</td>
<td>down_write</td>
<td>&lt;linux/rwsem.h&gt;</td>
</tr>
<tr>
<td>7</td>
<td>mutex_lock</td>
<td>&lt;linux/mutex.h&gt;</td>
</tr>
<tr>
<td>8</td>
<td>mutex_unlock</td>
<td>&lt;linux/mutex.h&gt;</td>
</tr>
<tr>
<td>9</td>
<td>atomic_add_negative</td>
<td>&lt;asm/atomic.h&gt;</td>
</tr>
<tr>
<td>10</td>
<td>atomic_inc</td>
<td>&lt;asm/atomic.h&gt;</td>
</tr>
<tr>
<td>11</td>
<td>spin_lock</td>
<td>&lt;linux/spinlock.h&gt;</td>
</tr>
<tr>
<td>12</td>
<td>spin_unlock</td>
<td>&lt;linux/spinlock.h&gt;</td>
</tr>
<tr>
<td>13</td>
<td>lock_kernel</td>
<td>&lt;linux/smp_lock.h&gt;</td>
</tr>
<tr>
<td>14</td>
<td>unlock_kernel</td>
<td>&lt;linux/smp_lock.h&gt;</td>
</tr>
<tr>
<td>15</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>
### Table 39. Page Related Functions

<table>
<thead>
<tr>
<th>S.No</th>
<th>API</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>virt_to_page</td>
<td>&lt;asm/page.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>pmd_offset</td>
<td>&lt;asm/pgtable-3level.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>pud_none</td>
<td>&lt;asm/pgtable-3level.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>pte_none</td>
<td>&lt;asm/pgtable-3level.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>pte_clear</td>
<td>&lt;asm/pgtable-3level.h&gt;</td>
</tr>
<tr>
<td>6</td>
<td>pte_unmap</td>
<td>&lt;asm/pgtable.h&gt;</td>
</tr>
<tr>
<td>7</td>
<td>pte_offset_map</td>
<td>&lt;asm/pgtable.h&gt;</td>
</tr>
<tr>
<td>8</td>
<td>pgd_offset</td>
<td>&lt;asm/pgtable.h&gt;</td>
</tr>
<tr>
<td>9</td>
<td>SetPageLocked</td>
<td>&lt;linux/page-flags.h&gt;</td>
</tr>
<tr>
<td>10</td>
<td>unlock_page</td>
<td>&lt;linux/pagemap.h&gt;</td>
</tr>
<tr>
<td>11</td>
<td>SetPageReserved</td>
<td>&lt;linux/page-flags.h&gt;</td>
</tr>
<tr>
<td>12</td>
<td>ClearPageReserved</td>
<td>&lt;linux/page-flags.h&gt;</td>
</tr>
<tr>
<td>13</td>
<td>io_remap_pfn_range</td>
<td>&lt;asm/pgtable.h&gt;</td>
</tr>
<tr>
<td>14</td>
<td>copy_page</td>
<td>&lt;asm/page.h&gt;</td>
</tr>
<tr>
<td>15</td>
<td>pte_page</td>
<td>&lt;asm/pgtable-3level.h&gt;</td>
</tr>
<tr>
<td>16</td>
<td>pmd_none</td>
<td>&lt;asm/pgtable.h&gt;</td>
</tr>
<tr>
<td>17</td>
<td>change_page_attr</td>
<td>&lt;asm/cacheflush.h&gt;</td>
</tr>
</tbody>
</table>

### Table 40. Linked Lists

<table>
<thead>
<tr>
<th>S.No</th>
<th>API</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>list_add</td>
<td>&lt;linux/list.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>list_del</td>
<td>&lt;linux/list.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>list_for_each</td>
<td>&lt;linux/list.h&gt;</td>
</tr>
</tbody>
</table>

### Table 41. Linux Driver Model Specific

<table>
<thead>
<tr>
<th>S.No</th>
<th>API</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>module_init</td>
<td>&lt;linux/init.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>module_exit</td>
<td>&lt;linux/init.h&gt;</td>
</tr>
</tbody>
</table>
Installing and Configuring Linux* OS Drivers

7.5 Uninstalling the IKM

To uninstall the IKM, run the install script described in Section 7.4.3 on page 174 with following argument:

`.install.sh uninstall`

This deletes the IKM file from kernel module location and invokes `depmod -a` to resolve dependencies for other module. A reboot might be required because IKM cannot be removed through the `rmmod` utility if a previous agpgart is part of the kernel image.

7.6 Configuring Linux*

This section describes how to edit the Linux X-Server configuration file for use with the IEGD.

The Intel Linux driver is for use with the integrated graphics of Intel chipsets on the Embedded Intel Architecture roadmap. The driver supports 8-, 16- and 24-bit pixel depths, dual independent head setup on capable hardware, flat panel, hardware 2D acceleration, hardware cursor, the XV extension, and the Xinerama extension.

7.6.1 Configuration Overview

IEGD auto-detects all device information necessary to initialize the integrated graphics device in most configurations. However, you can customize the IEGD configuration for any supported display by editing the X-Server’s configuration file, `xorg.conf`. Please refer to the `Xorg(5x)` man page for general configuration details. This section only covers configuration details specific to the IEGD.

### Table 42. CPU/Cache

<table>
<thead>
<tr>
<th>S.No</th>
<th>APIS</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rdmsr</td>
<td>&lt;asm/msr.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>wrmsr</td>
<td>&lt;asm/msr.h&gt;</td>
</tr>
<tr>
<td>3</td>
<td>on_each_cpu</td>
<td>&lt;linux/smp.h&gt;</td>
</tr>
<tr>
<td>4</td>
<td>boot_cpu_has</td>
<td>&lt;asm/cpufeature.h&gt;</td>
</tr>
<tr>
<td>5</td>
<td>flush_tlb_all</td>
<td>&lt;asm/tlbflush.h&gt;</td>
</tr>
<tr>
<td>6</td>
<td>wbinvd</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>wmb</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>virt_to_phys</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>global_cache_flush</td>
<td></td>
</tr>
</tbody>
</table>

### Table 43. User Access

<table>
<thead>
<tr>
<th>S.No</th>
<th>APIS</th>
<th>Header Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>copy_from_user</td>
<td>&lt;asm/uaccess.h&gt;</td>
</tr>
<tr>
<td>2</td>
<td>copy_to_user</td>
<td></td>
</tr>
</tbody>
</table>

---

*Intel® Embedded Graphics Drivers, EFI Video Driver, and Video BIOS User's Guide*
To configure the IEGD for the Linux* OS, you must edit the X server’s configuration file. You can either edit the configuration directly or you can use CED to create configurations that must then be copied into the configuration file. Even if you use CED to create a configuration, you must still edit the Linux configuration file.

7.6.2 Linux* OS Configuration Using CED

You can configure the Linux* driver settings using CED as described in Section 3.0, “Platform Configuration Using CED” on page 29 or in the CED online help.

The output file (yourbuildnamehere.x) from CED contains the settings required to configure the IEGD for Linux systems and can be pasted into the appropriate sections of the xorg.conf file.

7.6.3 Editing the Linux* OS Configuration File Directly

Instead of using the CED, you can edit the xorg.conf file directly. The following procedure outlines the steps to follow when editing the Linux* configuration file. Section 7.6.4, “The Linux* OS Configuration File” on page 180 provides details on each section of the configuration file.

1. Log in as root and open the configuration file for editing. The configuration file is typically located in the /etc/X11 directory but may be located elsewhere on your system.

2. In the Device section of the configuration file, enter the appropriate information for your driver. The configuration file must have at least one Device section. The Device section lets you define information about IEGD. You can use a single Device section for single, twin, or clone configurations. For Dual Independent Head configurations, you must specify a second Device section.

3. In the Screen section, enter information for each display in your configuration. The configuration file must have at least one Screen section. The Screen section binds a Device with a Monitor and lets you define resolution modes for the display. The Screen section is referenced in the ServerLayout section of the configuration file.

4. In the Monitor section, define monitor specifications and timings that will be used for the display. You must have a Monitor section defined for each display in your configuration. The Monitor section is referenced by the Screen section.

5. Save your changes to the file. For systems booted to run level 3, startx to restart. For systems booted to run level 5, kill X (Alt-backspace) to restart. Reboot if necessary.

7.6.4 The Linux* OS Configuration File

To configure the IEGD for use with the Linux* OS, you must edit the Linux configuration file (xorg.conf). There are several sections within the configuration that must be edited or created, including:

- Device Sections
- Screen Sections
- Monitor Sections
- ServerLayout Section (when configuring DIH)
- ServerFlags Section (when configuring Xinerama)

The above Sections are described following the sample file. Please see the xorg.conf man pages for complete details.
Figure 34. Example xorg.conf File

```conf
##
X Config options generated from CED
x11 conf skeleton
DriverVer=
##
Section "Screen"
 Identifier "Screen0"
 Device "Intel_IEGD-0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "1024x600"
EndSubSection
EndSection

Section "Monitor"
 Identifier "Monitor0"
 HorizSync 30.0 - 75.0
 VertRefresh 50.0 - 75.0
 Option "dpms"
EndSection

Section "Monitor"
 Identifier "Monitor1"
 HorizSync 30.0 - 75.0
 VertRefresh 50.0 - 75.0
 Option "dpms"
EndSection

Primary (First/only) display
Section "Device"
 Identifier "Intel_IEGD-0"
 Driver "iegd"
 VendorName "Intel(R) DEG"
 BoardName "Embedded Graphics"
 BusID "0:2:0"
 Screen 0
 Option "PcfVersion" "1792"
 Option "ConfigId" "1"
 Option "ALL/1/name" "dih965"
 Option "ALL/1/General/PortOrder" "42000"
 Option "ALL/1/General/DisplayConfig" "8"
 Option "ALL/1/General/DisplayDetect" "0"
 Option "ALL/1/General(CloneRefresh)" "60"
 Option "ALL/1/General(CloneWidth)" "1280"
 Option "ALL/1/General(CloneHeight)" "1024"
 Option "ALL/1/Port/4/General/cloneHeight" "LVDS"
 Option "ALL/1/Port/4/General/cloneWidth" "1024"
 Option "ALL/1/Port/4/General/cloneRefresh" "0"
 Option "ALL/1/Port/4/General/cloneDetect" "5"
 Option "ALL/1/Port/4/General/Rotation" "0"
 Option "ALL/1/Port/4/General/PortOrder" "0"
```
Option "ALL/1/Port/4/FpInfo/BkltMethod" "0"
Option "ALL/1/Port/4/Dtd/1/PixelClock" "54720"
Option "ALL/1/Port/4/Dtd/1/HorzActive" "1024"
Option "ALL/1/Port/4/Dtd/1/HorzSync" "230"
Option "ALL/1/Port/4/Dtd/1/HorzSyncPulse" "16"
Option "ALL/1/Port/4/Dtd/1/HorzBlank" "476"
Option "ALL/1/Port/4/Dtd/1/VertActive" "600"
Option "ALL/1/Port/4/Dtd/1/VertSync" "4"
Option "ALL/1/Port/4/Dtd/1/VertSyncPulse" "1"
Option "ALL/1/Port/4/Dtd/1/VertBlank" "8"
Option "ALL/1/Port/4/Dtd/1/Flags" "0x20000"
Option "ALL/1/Port/4/Attr/27" "0"
Option "ALL/1/Port/4/Attr/26" "18"
Option "ALL/1/Port/4/Attr/60" "1"
Option "ALL/1/Port/2/General/name" "DVI"
Option "ALL/1/Port/2/General/EdidAvail" "3"
Option "ALL/1/Port/2/General/EdidNotAvail" "1"
Option "ALL/1/Port/2/General/Rotation" "0"
Option "ALL/1/Port/2/General/Edid" "1"
Option "PortDrivers" "lvds sdvo"

EndSection

Section "ServerLayout"
  Identifier "Default Layout"
  Screen 0 "Screen0" 0 0
  Screen 1 "Screen1" RightOf "Screen0"
  InputDevice "Mouse0" "CorePointer"
  InputDevice "Keyboard0" "CoreKeyboard"
  InputDevice "DevInputMice" "SendCoreEvents"
EndSection

Section "Screen"
  Identifier "Screen1"
  Device "Intel_IEGD-1"
  Monitor "Monitor1"
  DefaultDepth 24
  SubSection "Display"
  Depth 24
  Modes "1280x1024" "1024x768"
EndSubSection
EndSection

# Secondary (for dual-head only) display
Section "Device"
Identifier "Intel_IEGD-1"
Driver     "iegd"
VendorName "Intel(R) DEG"
BoardName  "Embedded Graphics"
BusID      "0:2:0"
Screen     1
Option     "PcfVersion"            "1792"
Option     "ConfigId"              "1"
Option     "ALL/1/name"                   "dih"
Option     "ALL/1/General/PortOrder"      "42000"
Option     "ALL/1/General/DisplayConfig"  "8"
Option     "ALL/1/General/DisplayDetect"  "0"
Option     "ALL/1/General/CloneRefresh"   "60"
Option     "ALL/1/General/CloneWidth"     "1280"
Option     "ALL/1/General/CloneHeight"    "1024"
Option     "ALL/1/General/DRI"            "1"

EndSection

Section "ServerFlags"
Option    "Xinerama"  "False"

EndSection

7.6.4.1 Device Section

The Device section provides a description of a graphics device. The Linux* configuration file (xorg.conf) must have at least one Device section for the graphics driver. If your chipset supports multiple graphics pipelines, you may have multiple Device sections, but in most situations, only one is required. If you are creating a Dual Independent Head (DIH) configuration, you must have at least two Device sections.

The Device sections in the xorg.conf configuration files have the following format:

Section "Device"
Identifier "devname"
Driver "iegd"
...

EndSection

The Identifier field defines the device. This name is used to associate the device with a screen and is referenced in Screen sections.

The Driver field defines the driver to use and is a required field in the Device section. The intel driver, intel_drv.o, must be installed in the /usr/lib/xorg/modules/drivers (or the correct path for your system).

The remainder of the Device section can contain IEGD-specific options. Please see Table 44 on page 187 for a list and description of IEGD supported options.

DTD IDs for Multiple Ports

While DTD IDs must be unique, if two ports use the same DTD, CED writes to the configuration file twice, once for each port, each with the same ID. This configuration is correct and should not be changed if you manually edit the configuration file. In most cases you should use CED to configure your system.
For example, in the Device Section shown below, you see in the first set of option lines in blue that port 2 uses DTD 1 and in the second set of option lines in blue that port 4 also uses DTD 1. The configuration text is correct as written by CED and should not be changed. This situation applies only to Linux configurations.

```
Section "Device"
 Identifier "Intel_IEGD-0"
 Driver "iegd"
 VendorName "Intel(R) DEG"
 BoardName "Embedded Graphics"
 BusID "0:2:0"
 Screen 0
 Option "PcfVersion" "1792"
 Option "ConfigId" "1"
 Option "ALL/1/name" "dtd_test"
 Option "ALL/1/General/PortOrder" "24000"
 Option "ALL/1/General/DisplayConfig" "1"
 Option "ALL/1/General/DisplayDetect" "0"
 Option "ALL/1/Port/2/General/name" "sdvo-b"
 Option "ALL/1/Port/2/General/EdidAvail" "7"
 Option "ALL/1/Port/2/General/EdidNotAvail" "5"
 Option "ALL/1/Port/2/General/Rotation" "0"
 Option "ALL/1/Port/2/General/Edid" "1"
 Option "ALL/1/Port/2/Dtd/1/PixelClock" "108000"
 Option "ALL/1/Port/2/Dtd/1/HorzActive" "1280"
 Option "ALL/1/Port/2/Dtd/1/HorzSync" "48"
 Option "ALL/1/Port/2/Dtd/1/HorzSyncPulse" "112"
 Option "ALL/1/Port/2/Dtd/1/HorzBlank" "408"
 Option "ALL/1/Port/2/Dtd/1/VertActive" "1024"
 Option "ALL/1/Port/2/Dtd/1/VertSync" "1"
 Option "ALL/1/Port/2/Dtd/1/VertSyncPulse" "3"
 Option "ALL/1/Port/2/Dtd/1/VertBlank" "42"
 Option "ALL/1/Port/2/Dtd/1/Flags" "0xc020000"
 Option "ALL/1/Port/2/Dtd/2/PixelClock" "25175"
 Option "ALL/1/Port/2/Dtd/2/HorzActive" "640"
 Option "ALL/1/Port/2/Dtd/2/HorzSync" "8"
 Option "ALL/1/Port/2/Dtd/2/HorzSyncPulse" "96"
 Option "ALL/1/Port/2/Dtd/2/HorzBlank" "144"
 Option "ALL/1/Port/2/Dtd/2/VertActive" "480"
 Option "ALL/1/Port/2/Dtd/2/VertSync" "2"
 Option "ALL/1/Port/2/Dtd/2/VertSyncPulse" "2"
 Option "ALL/1/Port/2/Dtd/2/VertBlank" "29"
 Option "ALL/1/Port/2/Dtd/2/Flags" "0x0"
 Option "ALL/1/Port/4/General/name" "lvds"
 Option "ALL/1/Port/4/General/EdidAvail" "0"
 Option "ALL/1/Port/4/General/EdidNotAvail" "5"
 Option "ALL/1/Port/4/General/Rotation" "0"
 Option "ALL/1/Port/4/General/Edid" "0"
 Option "ALL/1/Port/4/Dtd/3/PixelClock" "65000"
 Option "ALL/1/Port/4/Dtd/3/HorzActive" "1024"
 Option "ALL/1/Port/4/Dtd/3/HorzSync" "24"
 Option "ALL/1/Port/4/Dtd/3/HorzSyncPulse" "136"
 Option "ALL/1/Port/4/Dtd/3/HorzBlank" "320"
 Option "ALL/1/Port/4/Dtd/3/VertActive" "768"
 Option "ALL/1/Port/4/Dtd/3/VertSync" "3"
```
Installing and Configuring Linux* OS Drivers

Option "ALL/1/Port/4/Dtd/3/VertSyncPulse" "6"
Option "ALL/1/Port/4/Dtd/3/VertBlank" "38"
Option "ALL/1/Port/4/Dtd/3/Flags" "0x20000"
Option "ALL/1/Port/4/Dtd/1/PixelClock" "108000"
Option "ALL/1/Port/4/Dtd/1/HorzActive" "1280"
Option "ALL/1/Port/4/Dtd/1/HorzSync" "48"
Option "ALL/1/Port/4/Dtd/1/VertSyncPulse" "112"
Option "ALL/1/Port/4/Dtd/1/VertBlank" "408"
Option "ALL/1/Port/4/Dtd/1/VertActive" "1024"
Option "ALL/1/Port/4/Dtd/1/VertSync" "1"
Option "ALL/1/Port/4/Dtd/1/VertSyncPulse" "3"
Option "ALL/1/Port/4/Dtd/1/VertBlank" "42"
Option "ALL/1/Port/4/Dtd/4/PixelClock" "81230"
Option "ALL/1/Port/4/Dtd/4/HorzActive" "1280"
Option "ALL/1/Port/4/Dtd/4/HorzSync" "48"
Option "ALL/1/Port/4/Dtd/4/HorzSyncPulse" "112"
Option "ALL/1/Port/4/Dtd/4/VertSyncPulse" "768"
Option "ALL/1/Port/4/Dtd/4/VertSync" "3"
Option "ALL/1/Port/4/Dtd/4/VertSyncPulse" "6"
Option "ALL/1/Port/4/Dtd/4/VertBlank" "34"
Option "ALL/1/Port/4/Dtd/4/Flags" "0x4000000"
Option "PortDrivers" "sdvo lvds"

EndSection

7.6.4.2 Screen Section

The Screen section is used to bind a Screen with a Device and a Monitor. It is also used to define resolution modes, color depths, and various other screen characteristics. Please see the xorg man page for detailed information.

The Screen section has the following format:

Section “Screen”
  Identifier “screenname”
  Device “devname”
  Monitor “Monitor0”
  DefaultDepth 24
Subsection “Display”
  Depth 24
  Modes "1280x1024" “1024x768" “800x600" “640x480”
EndSubSection

EndSection
7.6.4.3 **Monitor Section**

Use the `Monitor` section to define monitor characteristics and timings for a display. You should have one `Monitor` section for each display your system supports. The `Monitor` section is referenced in a `Screen` section and has the following format.

```ini
Section "Monitor"
 Identifier "Monitor0"
 VendorName "NEC"
 MonitorName "NEC MultiSync LCD"
 HorizSync 30-60
 VertRefresh 50-75
...
EndSection
```

7.6.4.4 **ServerLayout Section**

The `ServerLayout` section defines the overall layout of the system configuration. Input devices are specified in the `InputDevice` fields and output devices usually consist of multiple components (such as a graphics board and a monitor, which are bound together in a `Screen` section). You typically need to edit this section only when you are using a DIH configuration. You need to add a line to reference the second `Screen` section and specify its relative location to the first screen. In the following sample, the line beginning with `Screen 1`... is required for DIH configurations.

```ini
Section "ServerLayout"
 Identifier "Default Layout"
 Screen 0 "Screen0" 0 0
 Screen 1 "Screen1" RightOf "Screen0"
 InputDevice entries...
EndSection
```

7.6.4.5 **ServerFlags Section**

If you are configuring the IEGD for Xinerama support, you must set the "Xinerama" option to "True" in the `ServerFlags` section of the configuration file.

```ini
Section "ServerFlags"
 Option "Xinerama" "True"
EndSection
```
7.6.5  **Xorg** Configuration Options

The IEGD provides a format syntax for Linux* configuration options. The syntax is similar to the Microsoft Windows* INF file and is as follows:

```
"All/<ConfigID>/<block name>/<option name>"
```

The IEGD parses the configuration options and looks for "new-style" 4.0 and later options. If it does not find any, then it falls back to processing old-style options.

The device configuration must contain the "pcfversion" option with value "0x700". This indicates to the driver the options format to use. Earlier pcfversions (0 and 0x400) are supported for backward compatibility.

The IEGD driver supports multiple sets of installed configuration options that may be selected at runtime.

Configuration ID 0 is used unless otherwise specified in the configuration file or supplied by the system BIOS.

The table below shows the supported driver options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option &quot;PcfVersion&quot; &quot;integer&quot;</td>
<td>This option indicates that the new IEGD format is being used for the Linux* Configuration files (xorg.conf). The new format is hierarchical (similar to the Microsoft Windows* INF file) and allows both global and per-configuration information to be stored in the X-Server's configuration file (xorg.conf) rather than having per-configuration information stored separately in the EDIDx.bin file. This option is usually set to 0700 hex (1792 decimal) and is required for the new format.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/SWCursor&quot; &quot;boolean&quot;</td>
<td>Enable the use of the software cursor. The default is off and the hardware cursor is used.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/ShadowFB&quot; &quot;boolean&quot;</td>
<td>Enable or disable double buffering on the framebuffer. The default is that double buffering is disabled.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/TearFB&quot; &quot;boolean&quot;</td>
<td>Disable or enable wait for vblank when doing blits. The default is to not wait for vblank when doing blits. This is faster but may cause visible tearing of the display. Set to &quot;1&quot; (default) to not wait for vblank. Set to &quot;0&quot; to wait for vblank to reduce tearing. <strong>Note:</strong> The following usage models are not supported with TearFB:  - Render extension  - Rotation and Flip  - ShadowFB  - XvBlend  - When Blend or OGL is used to write to the framebuffer</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/XVideo&quot; &quot;boolean&quot;</td>
<td>Disable or enable XVideo support. In a dual independent head configuration, either the first display or the second display support XVideo. Both displays cannot support XVideo simultaneously. The default is XVideo support is enabled.</td>
</tr>
</tbody>
</table>
### Supported Driver Options (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/XVideoBlend&quot; &quot;boolean&quot;</td>
<td>Disable or enable XVideo support using the 3D blend manager. This provides XVideo support in configurations that cannot be supported with overlay. For example, this is supported on both displays in a dual independent head setup. It is also supported when the display is rotated or flipped. Color key is only supported if ShadowFB is enabled and the VideoKey is defined. The default is XVideoBlend support is enabled.</td>
</tr>
<tr>
<td>Option &quot;ConfigID&quot; &quot;integer&quot;</td>
<td>This option identifies the configuration.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Name&quot; &quot;string&quot;</td>
<td>A quoted string used to identify the configuration name.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Comment&quot; &quot;string&quot;</td>
<td>A quoted string used to identify the configuration file. Comment is a required field for Linux* configurations.</td>
</tr>
<tr>
<td>Option &quot;PortDrivers&quot; &quot;string&quot;</td>
<td>This option specifies which port driver(s) must be loaded. The list is a space- or comma-separated list of port driver names corresponding to the <em>.so port driver files included with the Linux</em> OS version of the driver. The port driver for the built-in analog output from the GMCH is always included and does not need to be specified in the PortDrivers option. The port drivers for the built-in LVDS and TV components (on chipsets with such features) are NOT automatically included. The &quot;lvds&quot; and &quot;inttv&quot; port drivers must be specified in order to use those output ports.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/PortOrder&quot; &quot;string&quot;</td>
<td>This option can be used to change the default port allocation order. The default order can vary depending on chipset. List the port type numbers in the priority order starting from first to last. The port type numbers are as follows: 1 - Integrated TV Encoder (mobile chipsets only) 2 - sDVO B port 3 - sDVO C port 4 - Integrated LVDS port (mobile chipsets only) 5 - Analog CRT port To set the order as Integrated TV Encoder, ANALOG, LVDS, sDVO C, sDVO B set the PortOrder string to &quot;15432&quot;. Zeros can be used to specify don't care. Setting this option incorrectly can result in port allocation failures.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/Rotation&quot; &quot;integer&quot;</td>
<td>Rotate the display. Valid values are 0, 90, 180, 270.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/Flip&quot; &quot;boolean&quot;</td>
<td>Invert the display horizontally.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/VideoKey&quot; &quot;integer&quot;</td>
<td>This sets the color key for XVideo and XVideoBlend. This value is either a 24-bit value or a 16-bit value, depending on the pixel depth of the screen. The color key is always enabled for XVideo, even when it is not defined. The color key is always disabled for XVideoBlend unless both this option is defined and the ShadowFB option is enabled. The default color key for XVideo is 0x0000ff00. For XVideoBlend, the color key is disabled by default.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/CloneWidth&quot; &quot;integer&quot;</td>
<td>This sets the display width for a clone port when CloneDisplay is active. The default is 640.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/General/CloneHeight&quot; &quot;integer&quot;</td>
<td>This sets the display height for a clone port when CloneDisplay is active. The default is 480.</td>
</tr>
</tbody>
</table>
### Supported Driver Options (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/CloneRefresh”</td>
<td>This sets the display vertical refresh rate for a clone port when CloneDisplay is active. The default is 60 Hz.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/EDID”</td>
<td>Enable or disable reading of EDID data from the output port device. Note that if the EDID option is specified in the config file (<code>xorg.conf</code>), all per-port EDID options in the configuration are overwritten by the EDID option specified in the config file.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/Accel”</td>
<td>Enable 2D acceleration. Default is enabled.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/DRI”</td>
<td>Enable DRI support for OGL. Default if enabled.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/OverlayGammaCorrectR”</td>
<td>Gamma correction value for overlay (red) in 24i8f format.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/Overlay GammaCorrectG”</td>
<td>Gamma correction value for overlay (blue) in 24i8f format.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/Overlay GammaCorrectB”</td>
<td>Gamma correction value for overlay (green) in 24i8f format.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/OverlayBrightnessCorrect”</td>
<td>Overlay brightness adjustments.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/OverlayContrastCorrect”</td>
<td>Overlay contrast adjustments.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/General/OverlaySaturationCorrect”</td>
<td>Overlay saturation adjustments.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/Name”</td>
<td>A quoted string used to identify the port name, for example, “sdvo”.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/EdidAvail”</td>
<td>Specifies how standard and user-defined modes are used when EDID is available. Default is 0.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/EdidNotAvail”</td>
<td>Specifies how standard and user-defined modes are used when EDID is not available. Default is 0.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/General/CenterOff”</td>
<td>When this option is enabled it DISABLES centering. Also, depending on the combination of “edid” + “user-dtd” + connected hardware, IEGD will add missing compatibility modes (6x4, 8x6, 10x7 &amp; 12x10) via centering. Use this option to disable this feature.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dvo/I2cDab”</td>
<td>I2c device address.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dvo/I2cSpeed”</td>
<td>I2c bus speed.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dvo/DDcSpeed”</td>
<td>DDC bus speed.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dvo/DDcDab”</td>
<td>DDC device address.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/ PixelClock”</td>
<td>Pixel clock frequency (in kHz).</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/HorzActive”</td>
<td>The active horizontal area (in pixels).</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/HorzSync”</td>
<td>Starting pixel for horizontal sync pulse.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/HorzSyncPulse”</td>
<td>Width of the horizontal sync pulse (pixels).</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/HorzBlank”</td>
<td>Width of the horizontal blanking period.</td>
</tr>
<tr>
<td>Option “All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/VertActive”</td>
<td>The active vertical area (in pixels).</td>
</tr>
</tbody>
</table>
7.6.6 Sample Dual Independent Head (DIH) Configuration

For dual independent head operation, several additional options must be set in the Device sections for each head. Both Device sections must specify the BusID, and the BusID must be the same for both devices. Each Device section must specify the Screen section that will associate the device with the Screen option.

```
BusID - B:F:S (Bus, Function, Slot)
Screen - number
```

The example below shows a sample DIH configuration. Only the Device, Screen, and Server Layout sections of the configuration file are shown. For a complete example of a configuration file, see Figure 34 on page 181.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/VertSync&quot; &quot;integer&quot;</td>
<td>Starting pixel for vertical sync pulse.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/VertSyncPulse&quot; &quot;integer&quot;</td>
<td>Width of the vertical sync pulse (pixels).</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/VertBlank&quot; &quot;integer&quot;</td>
<td>Width of the vertical blanking period.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/Dtd/Flags&quot; &quot;integer&quot;</td>
<td>Additional timing information (interlaced).</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltMethod&quot; &quot;integer&quot;</td>
<td>Specifies the backlight method.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltT1&quot; &quot;integer&quot;</td>
<td>Specifies backlight timing T1.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltT2&quot; &quot;integer&quot;</td>
<td>Specifies backlight timing T2.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltT3&quot; &quot;integer&quot;</td>
<td>Specifies backlight timing T3.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltT4&quot; &quot;integer&quot;</td>
<td>Specifies backlight timing T4.</td>
</tr>
<tr>
<td>Option &quot;All/&lt;ConfigID&gt;/Port/&lt;port number&gt;/FpInfo/BkltT5&quot; &quot;integer&quot;</td>
<td>Specifies backlight timing T5.</td>
</tr>
</tbody>
</table>
Figure 35. Sample DIH Configuration

Section "Device"
  Identifier "IntelEGD-1"
  Driver "iegd"
  BusID "0:2:0"
  Screen 0
  VideoRam 32768
EndSection

Section "Device"
  Identifier "IntelEGD-2"
  Driver "iegd"
  BusID "0:2:0"
  Screen 1
  VideoRam 32768
EndSection

Section "Screen"
  Identifier "Screen 1"
  Device "IntelEGD-1"
  Monitor "Monitor1"
  DefaultDepth 24
  Subsection "Display"
    Depth 8
    Modes "1280x1024" "1024x768" "800x600" "640x480"
    ViewPort 0 0
  EndSubsection
  Subsection "Display"
    Depth 16
    Modes "1280x1024" "1024x768" "800x600" "640x480"
    ViewPort 0 0
  EndSubsection
  Subsection "Display"
    Depth 24
    Modes "1280x1024" "1024x768" "800x600" "640x480"
    ViewPort 0 0
  EndSubsection
EndSection

Section "Screen"
  Identifier "Screen 2"
  Device "IntelEGD-2"
  Monitor "Monitor2"
  DefaultDepth 24
  Subsection "Display"
    Depth 8
    Modes "1280x1024" "1024x768" "800x600" "640x480"
    ViewPort 0 0
  EndSubsection
7.6.7 Video Memory Management

The Intel integrated graphics controllers have a unified memory architecture that uses system memory for video RAM. The amount of available video memory is not constant and can be configured through the `xorg.conf` file. Some video memory is required for normal operation of the device. This memory, such as framebuffers, backbuffers and scratch space, is allocated by the driver as needed. The bulk of video memory is used for off screen allocation of pixmaps by the X server. By default, 32 Mbytes of memory, possibly shared between two screens, is available for these purposes. This can be changed with the VideoRam option in the Device section of the configuration file (see page 183). It may be set to any reasonable value up to the limits of the hardware. Increasing this value reduces the amount of system memory available for other applications. This value is in units of 1024 Kbytes (32 Mbytes is represented by 32768).

7.6.8 Configuring Accelerated Video Decode for IEGD and Intel® System Controller Hub US15W

7.6.8.1 Hardware Video Acceleration Overview

Hardware Video Acceleration is the use of a specialized video engine to decode video streams (such as MPEG2, MPEG4, H.264 and VC-1) in order to free up the processor from having to do all of the decoding. Only some chipsets (such as the US15W) support a video engine. The flow of video through the various components generally is as follows:

1. The video player (such as the IEGD validated Splay) reads video file and determines the type.
2. Based on type, the proper codec shared library object is loaded.
3. The codec loads the VA library shared library object.
4. The VA library loads the `iegd_drv_video.so` shared library object.
5. The `iegd_drv_video.so` communicates, over the X wire protocol, with the IEGD X driver to send encoded video to the hardware for decoding.
You can either use the provided binary of the libva library found in the appropriate Xorg/Xserver directory in the IEGD release or build it from the source. To build it, use the following steps:

1. Untar libva.tgz included in the IEGD driver package in the Extras folder.
2. Enter the following commands:
   
   ```
 ./autogen.sh --prefix=/usr
 make
 make install
   ```

### 7.6.8.2 IEGD Driver

First install the IEGD Graphics Driver for Linux* per the appropriate installation instructions in Section 7.3. IEGD should be fully configured and running X properly before installing the VA Library.

### 7.6.8.3 Installing the VA Library (version 0.29)

Install the VA shared library object on the library path using the steps below.

1. Change to the IEGD directory for the X-Server version that matches your release where the library file is located (see Section 7.1 on page 149). For example, 
   ```
 cd IEGD_10_3_1_Linux/driver/Xorg-xserver-1.4
   ```

2. Copy the `libva.so.0.29.0` file to the `/usr/lib` folder using the following command:
   ```
 cp libva.so.0.29.0 /usr/lib
   ```

3. Create the library aliases:
   ```
 ln -s /usr/lib/libva.so.0.29.0 /usr/lib/libva.so
 ln -s /usr/lib/libva.so.0.29.0 /usr/lib/libva.so.0
   ```

4. Set the Libva environment variable to point to the correct folder:
   ```
 export LIBVA_DRIVERS_PATH=/usr/lib/xorg/modules/drivers
   ```

Your driver location may vary, so please use the path to where you installed the IEGD drivers. To make this "sticky" you may want to add this to your .profile, bashrc or whatever your distribution uses to store these variables.

### 7.6.8.4 Installing the IEGD Video Acceleration Driver

To install the provided Video Acceleration Driver (`iegd_drv_video.so`):

1. Change to the appropriate Xorg/Xserver directory where you unpacked the IEGD release.
2. Copy the driver to the directory where you installed the main IEGD driver from Section 7.3. For example:
   ```
 cp iegd_drv_video.so /usr/lib/xorg/modules/drivers
   ```

**Note:** Your actual directory will vary depending on your particular Linux* distribution.
7.6.8.5 Installing Helix Framework

Set up the Helix Framework environment to use accelerated video playback with the IEGD driver using the steps below.

1. Download helix-dbu-server and splay plug-ins from:
   https://helix-client.helixcommunity.org/releases
   You will need to accept the Helix DNA Technology Binary Research Use License agreement and register an account before downloading the software.
   a. Download the latest Splay Plug-ins files.
      Example: splay-plugin-atlas-01.2.0.tgz
   b. Download the latest Helix DBUS Server files.
      Example: helix-dbus-server-0.6.0.tar.bz2
2. Untar splay-plugins.tgz and copy the contents to the directory /usr/lib/helix/splay
3. Untar helix-dbus-server-0.6.0.tar.bz2
4. Run make install from the helix-dbus-server-0.6.0 directory.

7.6.8.6 Installing Intel® Media Codec

The latest EVALUATION ONLY versions of the VA API enabled hardware accelerated codecs for Helix are available by contacting Intel through QuAD. After you have the codec package, follow these steps to install it:

1. Untar the codec package.
2. Copy libipp_hx_* .so to /usr/lib/helix/splay
3. Remove /usr/lib/helix/splay/mpgfformat.so
4. Remove /usr/lib/helix/splay/h264dec.so
5. Remove /usr/lib/helix/splay/mp4vrender.so
6. Remove /usr/lib/helix/splay/wmvrender.so
7. Remove /usr/lib/helix/splay/wmv9.so

7.6.8.7 Playing Video

The video player application used must support the Helix plug-in framework. A sample player (splay) is included and known to work. The splay application is located in the /usr/lib/helix/splay directory.

To play a video, enter the following command:

```bash
 /usr/lib/helix/splay/splay -l /usr/lib/helix/splay <Video file>
```
where `<Video file>` is replaced with an actual file name.
7.6.8 Troubleshooting

1. If the "splay" application quits silently, try removing the helix configuration files
   ~/.helix, ~/.hxplayererrc, and ~/.realplayererrc.

2. Check the codec version numbers using the script get_lib_version.sh
   included with the codecs. The output should be:
   
<table>
<thead>
<tr>
<th>Codec Name</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>libipp_hx_ac3ad.so</td>
<td>ipp_hx_version:20080822:1.8.8.22</td>
</tr>
<tr>
<td>libipp_hx_h264vd.so</td>
<td>ipp_hx_version:20080822:1.8.8.22</td>
</tr>
<tr>
<td>libipp_hx_mp2sp.so</td>
<td>ipp_hx_version:20080822:1.8.8.22</td>
</tr>
<tr>
<td>libipp_hx_mp2vd.so</td>
<td>ipp_hx_version:20080822:1.8.8.22</td>
</tr>
<tr>
<td>libipp_hx_mp4vd.so</td>
<td>ipp_hx_version:20080822:1.8.8.22</td>
</tr>
<tr>
<td>libipp_hx_vc1vd.so</td>
<td>ipp_hx_version:20080401:1.8.8.22</td>
</tr>
</tbody>
</table>

3. If you receive the following message when you try to play video:
   
   libva: Trying to open /usr/X11R6/lib/modules/dri/
      iegd_drv_video.so
   libva: va_openDriver() returns -1

   make sure the LIBVA_DRIVERS_PATH environment variable is set to the location
   where you installed the iegd_drv_video.so file. Typically this would be
   /usr/lib/xorg/modules/drivers.

7.6.9 Graphics Port Initialization

When used with a graphic chipset that supports multiple graphics pipelines, the driver
supports multiple screens and Xinerama. This support is enabled by creating additional
Device sections for each additional graphics device on the PCI bus. The driver locates
the first device on the bus and associates it with the device section that matches (or
one that does not specify a busID). This becomes the primary display. If the chipset
supports multiple display pipes, and the config file specifies two Device sections and
two Screen sections, the driver attempts to operate in a dual-independent head mode.
After all the graphics devices and device sections have been matched up, the driver
attempts to allocate any remaining output ports and attach them to the primary
graphics device. For example:

- Two pipes and two ports allows for dual independent displays.
- One pipe and two ports allows for a cloned display (915GV special case).
7.6.10 OpenGL Support

The IEGD supports OpenGL* for the following Intel chipsets:

- Intel® Atom™ Processor 400 and 500 Series
- Intel® Q45/G41/G45 Express chipset
- Intel® GM45/GL40/GS45 Express chipset
- Intel® System Controller Hub US15W/US15WP/WPT chipset
- Intel® Q35 Express chipset
- Mobile Intel® GLE960/GME965 Express chipset
- Intel® Q965 Express chipset
- Mobile Intel® 945GSE Express chipset
- Mobile Intel® 945GME Express chipset
- Intel® 945G Express chipset
- Mobile Intel® 915GME Express chipsets
- Intel® 915GV Express chipsets
- Mobile Intel® 910GMLE Express chipset
- Intel® 915GV Express chipsets
- Mobile Intel® 910GMLE Express chipset

The OpenGL implementation for IEGD consists of three components.

- **libGL**: This is the shared library that implements the OpenGL and GLX APIs. It is linked by all OpenGL applications.
- **iegd.ko**: This is the Direct Rendering Manager (DRM). It is a kernel module that provides the OpenGL application with the permissions necessary to directly access the DMA buffers used by libGL.
- **X Server**: The existing IEGD X server driver has been enhanced to communicate with libGL.

Installing the IEGD OpenGL driver provides a fully hardware accelerated implementation of the OpenGL library to applications. This implementation makes use of a Direct Rendering technology, which allows the client to directly write to DMA buffers that are used by the graphics hardware.

Due to the use of direct rendering technology, system designers should take special care to ensure that only trusted clients are allowed to use the OpenGL library. A malicious application could otherwise use direct rendering to destabilize the graphics hardware or, in theory, elevate their permissions on the system.

A system designer can control the access to the direct rendering functionality by limiting the access to the DRI device file located at:

```
/dev/dri/card0
```

The permissions on this device are set by the X-Server using the information provided in the “DRI” section of the configuration file.
7.6.10.1 OpenGL Installation

To install the IEGD libGL onto a system, copy the library binary from the package to the standard location and then link the files as follows:

- For gen4:
  ```
 copy libGLgn4.so and then run ln -sfv libGLgn4.so libGL.so.1.2
 ln -sfv libGL.so.1.2 libGL.so.1
 ln -sfv libGL.so.1.2 libGL.so
  ```

- For gen3:
  ```
 copy libGLgn3.so and then run ln -sfv libGLgn3.so libGL.so.1.2
 ln -sfv libGL.so.1.2 libGL.so.1
 ln -sfv libGL.so.1.2 libGL.so
  ```

- For US15W:
  ```
 copy libGL_ga.so.1.2 and then run ln -sfv libGL_ga.so libGL.so.1.2
 ln -sfv libGL.so.1.2 libGL.so.1
 ln -sfv libGL.so.1.2 libGL.so
  ```

After you complete the copy and link steps above, compile and install the Direct Rendering Manager (DRM) kernel module from the sources provided. Lastly, enable the DRI option in the X server's configuration file. Refer to the sections below for details on specific operating systems.

**Linux**

The OGL/ES application requires the following share libraries:

- libEGL.so
- libGLESv1_CM.so (ES1.1)
- libGLESv2.so (ES2.0)
- iegd_dri.so
- egl_xdri.so
- egl_iegd_dri.so
- libEGLdri.so

A typical OpenGL ES program will link with `libEGL.so` and either `libGLESv1_CM.so` or `libGLESv2.so`. Then `libEGL.so` will link to `libEGLdri.so` or `egl_xdri.so` or `egl_iegd_dri.so`. Then, `libEGLdri.so/egl_xdri.so/egl_iegd_dri.so` will link to `iegd_dri.so`.

**Windows CE**

The application needs to link to the following import libraries to compile:

- `libOpenGL.lib` - OpenGL
- `libGLES_CM.lib` - ES 1.1
- `libGLESv2.lib` - ES2.0
The application then needs to be able to access the following dynamic link libraries during runtime:

- `libOpenGL.dll` - OpenGL
- `libGLES_CM.dll` - ES 1.1
- `libGLESv2.dll` - ES2.0

**Windows XP**

The application needs to link to the following import libraries to compile:

- `libGLES_CM.lib` - ES 1.1
- `libGLESv2.lib` - ES2.0

The application then needs to be able to access the following dynamic link libraries during runtime:

- `libGLES_CM.dll` - ES 1.1
- `libGLESv2.dll` - ES2.0

The OpenGL driver is automatically installed during the normal driver installation.

**Note:** The system likely has a version of `libGL` already installed. You may want to make a backup copy of the existing library before installing the IEGD library.

**Installation Steps**

1. `cd IEGD_x_Linux/driver/<directory>`
   where `<directory>` is whichever X-Server or Xorg driver directory is being used. For example, for Fedora 7 it would be `driver/Xorg-xserver-1.3`.

   **Note:** The locations and commands may be different for a specific Linux distribution.

2. `cp iegd_dri.so /usr/lib/dri`

   **Note:** If you find that you are still using software rendering and hardware rendering is not being used, copy the `iegd_dri.so` to `/usr/X11R6/lib/dri`.

3. `cp libGLgn#.so /usr/lib/libGL.so.1.2`
   - For 910GMLE, 915GME, 915GV, 945GME, 945GSE, 945G
     Use `libGLgn3.so`
   - For Q965, GLE960/GME965, Q45, GM45/GL40/GS45, Q35
     Use `libGLgn4.so`
   - US15W/US15WP/WPT
     Use `libGL_ga.so.1.2`

   **Note:** For Fedora 10, perform the following steps. For other operating systems, continue with step 4.

   - `cd /lib`
   - `ln -sfv libexpat.so.1.5.3 libexpat.so.0`

4. `cd /usr/lib`
5. `ln -sfv /usr/lib/libGL.so.1.2 libGL.so`
6. `ln -sfv /usr/lib/libGL.so.1.2 libGL.so.1`
7. `ldconfig`
Installing and Configuring Linux* OS Drivers

Note: Skip steps 8 and 9 if you are using the IKM method detailed in Section 7.4.

8. `cd IEGD_10_3_1_Linux/IKM/Drm`

9. `make`
   This will build and install the kernel module for the currently running kernel. If another kernel is installed or used, this step must be performed again.

10. `depmod -Ae`

11. Restart the X-Server or restart the system.

To Enable or Disable Multi-Sample Anti-Aliasing (MSAA)

If you would like to enable or disable Multi-Sample Anti-Aliasing on the Intel US15W, enter the following commands into the terminal:

- **Enable:** `export _GL_FSAA_MODE=4`
- **Disable:** `export _GL_FSAA_MODE=0` or `export _GL_FSAA_MODE=1`

7.6.10.2 OpenGL Use Considerations

**Allocation of Mipmaps and Memory Usage**

Under normal circumstances the OpenGL driver will allocate all mip levels for a texture at allocation time. This is due to the fact that the OpenGL API allows an application to make use of the mips without first conveying an intention to do so. All mips are therefore available all the time.

The IEGD OpenGL driver has a special-case scenario to prevent the allocation of mips when the application can ensure that they will never be populated or used. On some hardware configurations this can save 50% on texture memory usage. To enable this feature, the application should do the following:

Using `glTexParameter*()`, set the `GL_TEXTURE_MAX_LEVEL` parameter to 0 before populating the texture (before any call to `glTexImage2D()`). This will prevent mips 1-N from being allocated but will not prevent them from being used. If the mips are inadvertently used, the results are undefined.

7.6.10.3 OpenGL ES

OpenGLES headers are downloadable from http://www.khronos.org/opengles/spec/.

EGL headers are downloadable from http://www.khronos.org/registry/egl/.

See also Appendix D, “2D/3D API Support”.

7.6.11 Sample Advanced EDID Configurations for Linux* OS

The `edid_avail` and `edid_not_avail` parameters control the available timings for any display. The `edid_avail` parameter is used when EDID information is read from the display. If the driver is unable to read EDID information from the display or if the `edid` parameter in the config file is set to "0" (disable), then the settings of the `edid_not_avail` parameter are used. Please see Section 3.0, “Platform Configuration Using CED” on page 29 and CED online help.

There is an `edid` option that can be placed in the `xorg.conf` files that controls the behavior of the overall driver, and there are also EDID settings within CED that control the behavior on each port (`edid`, `edid_avail`, and `edid_not_avail`). The combination of these settings determines how the driver behaves. The table below shows various configurations and the expected behavior of the driver.
7.6.12 AGP GART Errors

The following are the most common AGP GART errors:

1. Symptom: No “agpgart: ” in the system log
   Cause: The IEGD AGP GART patch has not been applied to the system.

2. Symptom: The Xorg.0.log has the following:
   (EE) INTEL(0): gart.c: Acquire IOCTL failed
   Cause: The IEGD AGP GART module has not been loaded.

3. Symptom: When starting the X-Server, the following message is listed in the X log file.
   “Graphics hardware initialization failed.
   The most likely cause is a missing or incorrect agpgart kernel module.
   module_init returned -1”
   Cause: The agpgart kernel module is not loaded or does not support the chipset being used. Check the kernel messages for the message:
   “agpgart: Detected an Intel xxxx chipset”
   If this message is there, the agpgart is not the problem.

7.7 Runtime Configuration GUI

You can change the configuration and runtime attributes of the driver using the iegdgui runtime configuration tool. The iegdgui resides in the /Utilities directory. The Intel Embedded Graphics Drivers GUI (iegdgui) is a GUI application that is used to view and control the Intel Embedded Graphics Drivers. This tool is used to retrieve status information of the display and driver and also to configure the supported display attributes. The iegdgui also demonstrates multi-monitor support.
7.7.1 iegdgui Setup

To run the iegdgui, you need to ensure that the X-Server has been configured to use the IEGD. See Section 7.6.1, “Configuration Overview” on page 179 for details on configuring and installing the IEGD.

You need GTK+ and libglade, which are part of the Linux* distribution and should already be installed.

Ensure that the LD_LIBRARY_PATH environment variable points to the X11R6 library. If it does not, type the following command:

```
export LD_LIBRARY_PATH=/usr/X11R6/lib
```

Ensure the iegdgui is executable by changing directories to

```
.../IEGD_10_3_1_Linux/Utilities
```

and running the following command:

```
ls -l iegdgui
```

Executable permissions should be set for all three Linux* groups (user, group, world) and should look like this:

```
-rwxr_xr_x iegdgui ...
```

If the permissions do not contain an “x” for each group, change the permissions using the following command:

```
chmod +rwx iegdgui
```

After you have completed this step, the IEGD can be launched.

7.7.2 Using the iegdgui Runtime Configuration Utility

The iegdgui application provides four tabs: Driver Info, Display Config, Display Attributes, and Color Correction.

- **Driver Info**: Contains the driver information.
- **Display Config**: Contains current display information and allows configuration of display configurations, display resolutions for primary and secondary displays and enabling/disabling of a specified port.
- **Display Attributes**: Contains the supported Port Driver (PD) attributes and allows configuration of PD attributes.
- **Color Correction**: Contains current color-correction information for the framebuffer and overlay. Using this tab, you can change the framebuffer and overlay color settings.

The figure below shows the Driver info tab.
To view current display information and or to change the current configuration of display configurations, display resolutions of the primary and secondary displays and enabling/disabling of a specified port, click the **Display Config** tab.

**Note:**

If you make any changes to the configuration, click **Apply** for the changes to take effect.

The figure below shows a sample configuration.
The **Display Status** section of the above dialog shows the current configuration for the **Primary** and **Secondary** displays.

In the **Display Configuration** section of the dialog, select the required display configuration in the **Display Config** drop-down list. This allows the user to choose between Single, Twin, Clone and Extended for all connected ports. A maximum of two ports per display configuration is currently allowed.

In the **Primary Mode** and **Secondary Mode** sections of the dialog, you can change display resolutions via the **Resolution** drop-down list.

In the **Display Settings** section of the dialog, you can view and change the settings for a port and then rotate and flip the display via the appropriate drop-down lists:

- **Port**: Allows you to select the required port.
- **Port Status**: Allows you to enable or disable the selected port.

**Note:** If you change any configuration settings in the **Display Config** dialog box, click **Apply** for the changes to take effect.
To view or change the attributes for a port, click the Display Attributes tab. The figure below shows a sample configuration. Please see Appendix B for detailed information on port driver attributes.

**Note:** If you make any changes to the port driver attributes, click **Apply** for the changes to take effect.

**Figure 38. Example Linux* Runtime Configuration GUI — Display Attributes Tab**

To view and change color corrections, click the Color Correction tab. The figures above and below show sample Color Correction tab screens for Framebuffer and Overlay, color correction values for which are shown in Table 30 and Table 31.

**Note:** If you make any changes to the color-correction attributes, click **Apply** for the changes to take effect.
Installing and Configuring Linux* OS Drivers

Figure 39. Example Linux* Runtime Configuration GUI — Color Correction Tab (Framebuffer)

The following steps present an example color-correction procedure:

a. Select Framebuffer in the Surface section and select the appropriate port for the color correction to be applied to or select Overlay in the Surface section for color correction to be applied to the overlay.

b. Select the required color to be corrected in the Color section.

c. Select the required color attribute to be corrected in the Gamma Correction section.

d. Click Restore Defaults to restore the default values.
Figure 40. Example Linux* Runtime Configuration GUI — Color Correction Tab (Overlay)
Example INF File

Appendix A Example INF File

```plaintext
;**
; Filename: iegd.inf
; $Revision$
; Id
; $Source$
;
; Copyright (c) 2009 Intel Corporation. All rights reserved.
;
;**

[Version]
Signature="$WINDOWS NT$
Class=Display
ClassGUID={4D36E968-E325-11CE-BFC1-08002BE10318}
Provider=%Intel%
;CatalogFile=iegd.cat
DriverVer = 12/17/2009,10.3.0

;===

[SourceDisksNames]
1=\%DiskDesc\%,,,""

[SourceDisksFiles]
iegdmini.sys = 1
iegdckey.vp = 1
iegdmsys.vp = 1
iegdcaigt.cpa = 1
iegdcaigt.vp = 1
iegddis.dll = 1
iegd3dg3.dll = 1
iegd3dg4.dll = 1
iegd3dga.dll = 1
iegd3dga.dll = 1
iegd3dga.dll = 1
libGLES_CM.dll = 1
libGLESv2.dll = 1
analog.sys = 1
lvds.sys = 1
sdvo.sys = 1
tv.sys = 1
hdmi.sys = 1
sdvo.vp = 1
hdmi.vp = 1
analog.vp = 1
lvds.vp = 1
tv.vp = 1

;===

[DestinationDirs]
DefaultDestDir = 11; System directory
iegd.Display_nap = 11
iegd.Display_gn4 = 11
iegd.Display_plb = 11
iegd.OpenGL_plb = 11
```
Example INF File

```
iegd.Miniport = 12; Drivers directory
iegd.Copp1 = 12
iegd.PortDrvs_nap = 12
iegd.PortDrvs_gn4 = 12
iegd.PortDrvs_plb = 12

;===
[Manufacturer]
%Intel%=Intel.Mfg

;===
[Intel.Mfg]
%Intel% %i915GD0% = iegd_nap, PCI\VEN_8086&DEV_2582
%Intel% %i915GD1% = iegd_nap, PCI\VEN_8086&DEV_2782
%Intel% %i915AL0% = iegd_nap, PCI\VEN_8086&DEV_2592
%Intel% %i915AL1% = iegd_nap, PCI\VEN_8086&DEV_2792
%Intel% %i945LP0% = iegd_nap, PCI\VEN_8086&DEV_2772
%Intel% %i945LP1% = iegd_nap, PCI\VEN_8086&DEV_2776
%Intel% %i945CT0% = iegd_nap, PCI\VEN_8086&DEV_27A2
%Intel% %i945CT1% = iegd_nap, PCI\VEN_8086&DEV_27A6
%Intel% %i945WB0% = iegd_nap, PCI\VEN_8086&DEV_27AE
%Intel% %i35BL0% = iegd_nap, PCI\VEN_8086&DEV_29C2
%Intel% %i35BL1% = iegd_nap, PCI\VEN_8086&DEV_29C3
%Intel% %i35BL0A2% = iegd_nap, PCI\VEN_8086&DEV_29B2
%Intel% %i35BL1A2% = iegd_nap, PCI\VEN_8086&DEV_29B3
%Intel% %i3150DT0% = iegd_nap, PCI\VEN_8086&DEV_A001
%Intel% %i3150DT1% = iegd_nap, PCI\VEN_8086&DEV_A002
%Intel% %i3150MB0% = iegd_nap, PCI\VEN_8086&DEV_A011
%Intel% %i3150MB1% = iegd_nap, PCI\VEN_8086&DEV_A012
%Intel% %i965BW0% = iegd_gn4, PCI\VEN_8086&DEV_2982
%Intel% %i965BW1% = iegd_gn4, PCI\VEN_8086&DEV_2983
%Intel% %iG9650% = iegd_gn4, PCI\VEN_8086&DEV_29A2
%Intel% %iG9651% = iegd_gn4, PCI\VEN_8086&DEV_29A3
%Intel% %iG9650% = iegd_gn4, PCI\VEN_8086&DEV_29A2
%Intel% %iG9651% = iegd_gn4, PCI\VEN_8086&DEV_29A3
%Intel% %i946GZ0% = iegd_gn4, PCI\VEN_8086&DEV_2972
%Intel% %i946GZ1% = iegd_gn4, PCI\VEN_8086&DEV_2973
%Intel% %i965GM0% = iegd_gn4, PCI\VEN_8086&DEV_2A02
%Intel% %i965GM1% = iegd_gn4, PCI\VEN_8086&DEV_2A03
%Intel% %i965GME0% = iegd_gn4, PCI\VEN_8086&DEV_2A12
%Intel% %i965GME1% = iegd_gn4, PCI\VEN_8086&DEV_2A13
%Intel% %iGM450% = iegd_gn4, PCI\VEN_8086&DEV_2A42
%Intel% %iGM451% = iegd_gn4, PCI\VEN_8086&DEV_2A43
%Intel% %iG450% = iegd_gn4, PCI\VEN_8086&DEV_2E22
%Intel% %iG451% = iegd_gn4, PCI\VEN_8086&DEV_2E23
%Intel% %iG410% = iegd_gn4, PCI\VEN_8086&DEV_2E32
%Intel% %iG411% = iegd_gn4, PCI\VEN_8086&DEV_2E33
%Intel% %iELK0% = iegd_gn4, PCI\VEN_8086&DEV_2E02
%Intel% %iELK1% = iegd_gn4, PCI\VEN_8086&DEV_2E03
%Intel% %iQ450% = iegd_gn4, PCI\VEN_8086&DEV_2E12
%Intel% %iQ451% = iegd_gn4, PCI\VEN_8086&DEV_2E13
%Intel% %i900G0% = iegd_plb, PCI\VEN_8086&DEV_8108

;===
[iegd_nap.GeneralConfigData]
MaximumNumberOfDevices = 2
MaximumDeviceMemoryConfiguration = 256

[iegd_gn4.GeneralConfigData]
MaximumNumberOfDevices = 2
MaximumDeviceMemoryConfiguration = 512
```

1. Certified Output Protection Protocol (COPP) is a proprietary product of Microsoft Corporation.
**Example INF File**

```plaintext
[iegd_plb.GeneralConfigData]
MaximumNumberOfDevices = 2
MaximumDeviceMemoryConfiguration = 256

;--
[iegd_nap]
CopyFiles = iegd.Miniport, iegd.Display_nap, iegd.PortDrvs_nap, iegd.Copp

[iegd_gn4]

[iegd_plb]

;--
[iegd.Miniport]
iegdmulti.sys

[iegd.Copp]
iegdckey.vp
iegdmsys.vp
sdvo.vp
hdmi.vp
analog.vp
tv.vp
tv.vp
iegdcaigt.cpa
iegdcaigt.vp

[iegd.Display_nap]
iegddis.dll
iegd3dg3.dll

[iegd.Display_gn4]
iegddis.dll
iegd3dg4.dll

[iegd.Display_plb]
iegddis.dll
iegd3dga.dll

[iegd.OpenGL_plb]
iegdglga.dll
libGLES_CM.dll
libGLESv2.dll

[iegd.PortDrvs_nap]
analog.sys
sdvo.sys
lvds.sys
tv.sys

[iegd.PortDrvs_gn4]
analog.sys
sdvo.sys
lvds.sys
hdmi.sys

[iegd.PortDrvs_plb]
sdvo.sys
lvds.sys
```
Example INF File

;-------------------------------------------------------------
[iegd_nap.Services]
AddService = iegdmini, 0x00000002, iegd_Service_Inst, iegd_EventLog_Inst
AddService = analog, ,analog_Service_Inst, iegd_EventLog_Inst
AddService = lvds, ,lvds_Service_Inst, iegd_EventLog_Inst
AddService = sdvo, ,sdvo_Service_Inst, iegd_EventLog_Inst
AddService = tv, ,tv_Service_Inst, iegd_EventLog_Inst

[iegd_gn4.Services]
AddService = iegdmini, 0x00000002, iegd_Service_Inst, iegd_EventLog_Inst
AddService = analog, ,analog_Service_Inst, iegd_EventLog_Inst
AddService = lvds, ,lvds_Service_Inst, iegd_EventLog_Inst
AddService = sdvo, ,sdvo_Service_Inst, iegd_EventLog_Inst
AddService = hdmi, ,hdmi_Service_Inst, iegd_EventLog_Inst

[iegd_plb.Services]
AddService = iegdmini, 0x00000002, iegd_Service_Inst, iegd_EventLog_Inst
AddService = lvds, ,lvds_Service_Inst, iegd_EventLog_Inst
AddService = sdvo, ,sdvo_Service_Inst, iegd_EventLog_Inst

;-------------------------------------------------------------
[iegd_Service_Inst]
ServiceType = 1
StartType = %SERVICE_DEMAND_START%
ErrorControl = 0
LoadOrderGroup = Video
ServiceBinary = %12%\iegdmini.sys

[analog_Service_Inst]
DisplayName = "analog"
ServiceType = %SERVICE_KERNEL_DRIVER%
StartType = %SERVICE_DEMAND_START%
ErrorControl = %SERVICE_ERROR_IGNORE%
ServiceBinary = %12%\analog.sys

[lvds_Service_Inst]
DisplayName = "lvds"
ServiceType = %SERVICE_KERNEL_DRIVER%
StartType = %SERVICE_DEMAND_START%
ErrorControl = %SERVICE_ERROR_IGNORE%
ServiceBinary = %12%\lvds.sys

[sdvo_Service_Inst]
DisplayName = "sdvo"
ServiceType = %SERVICE_KERNEL_DRIVER%
StartType = %SERVICE_DEMAND_START%
ErrorControl = %SERVICE_ERROR_IGNORE%
ServiceBinary = %12%\sdvo.sys

[tv_Service_Inst]
DisplayName = "tv"
ServiceType = %SERVICE_KERNEL_DRIVER%
StartType = %SERVICE_DEMAND_START%
ErrorControl = %SERVICE_ERROR_IGNORE%
ServiceBinary = %12%\tv.sys

[hdmi_Service_Inst]
DisplayName = "hdmi"
ServiceType = %SERVICE_KERNEL_DRIVER%
StartType = %SERVICE_DEMAND_START%
ErrorControl = %SERVICE_ERROR_IGNORE%
ServiceBinary = %12%\hdmi.sys
Example INF File

```plaintext
;===
[iegd_EventLog_Inst]
AddReg = iegd_EventLog_AddReg

[iegd_EventLog_AddReg]
HKR,,EventMessageFile,0x00020000, "%SystemRoot%\System32\IoLogMsg.dll;%SystemRoot%\System32\drivers\iegdmini.sys"
HKR,,TypesSupported,0x00010001, 7

;===
[iegd_nap.SoftwareSettings]
AddReg = iegd_SoftwareDeviceSettings_nap

[iegd_gn4.SoftwareSettings]
AddReg = iegd_SoftwareDeviceSettings_gn4

[iegd_plb.SoftwareSettings]
AddReg = iegd_SoftwareDeviceSettings_plb
AddReg = iegd_ICDSoftwareSettings

;===
[iegd_SoftwareDeviceSettings_nap]
HKR,,InstalledDisplayDrivers, %REG_MULTI_SZ%, iegddis
HKR,,MultiFunctionSupported, %REG_MULTI_SZ%, 1
HKR,,VgaCompatible, %REG_DWORD%, 0
HKR,,PcfVersion, %REG_DWORD%, 0x0700
HKR,,ConfigId, %REG_DWORD%, 1
HKR,,PortDrivers, %REG_SZ%, "analog"

;===
[iegd_ICDSoftwareSettings]
HKLM, "SOFTWARE\Microsoft\Windows NT\CurrentVersion\OpenGLDrivers\iegddis", DLL, %REG_SZ%, iegdglga
HKLM, "SOFTWARE\Microsoft\Windows NT\CurrentVersion\OpenGLDrivers\iegddis", DriverVersion, %REG_DWORD%, 0x00000001
HKLM, "SOFTWARE\Microsoft\Windows NT\CurrentVersion\OpenGLDrivers\iegddis", Flags, %REG_DWORD%, 0x00000001
HKLM, "SOFTWARE\Microsoft\Windows NT\CurrentVersion\OpenGLDrivers\iegddis", Version, %REG_DWORD%, 0x00000002

;===
[Strings]
;--
; Localizable Strings
;--
Intel="Intel Corporation"
DiskDesc="Embedded Installation"

i915GD0="915G/915GV/910G Embedded Graphics Chipset Function 0"
i915GD1="915G/915GV/910G Embedded Graphics Chipset Function 1"
i915AL0="915GM/915GMS/915GME/910GMLE Embedded Graphics Chipset Function 0"
i915AL1="915GM/915GMS/915GME/910GMLE Embedded Graphics Chipset Function 1"
i945LP0="945G Embedded Graphics Chipset Function 0"
i945LP1="945G Embedded Graphics Chipset Function 1"
i945CT0="945GM Embedded Graphics Chipset Function 0"
i945CT1="945GM Embedded Graphics Chipset Function 1"
i945WB0="945GME/945GSE Embedded Graphics Chipset Function 0"
i945WB1="945GME/945GSE Embedded Graphics Chipset Function 1"
i35BL0="Q35 Embedded Graphics Chipset Function 0"
i35BL1="Q35 Embedded Graphics Chipset Function 1"
i35BL0A2="Q35 Embedded Graphics Chipset Function 0"
i35BL1A2="Q35 Embedded Graphics Chipset Function 1"
i3150DT0="GMA 3150 Embedded Graphics Chipset Function 0"
i3150DT1="GMA 3150 Embedded Graphics Chipset Function 1"
```
Example INF File

i3150MB0="GMA 3150 Embedded Graphics Chipset Function 0"
i3150MB1="GMA 3150 Embedded Graphics Chipset Function 1"

i965BW0="965G Embedded Graphics Chipset Function 0"
i965BW1="965G Embedded Graphics Chipset Function 1"
i96550="G965 Embedded Graphics Chipset Function 0"
i96551="G965 Embedded Graphics Chipset Function 1"
i965500="965W Embedded Graphics Chipset Function 0"
i965501="965W Embedded Graphics Chipset Function 1"
i965GM0="GM965 Embedded Graphics Chipset Function 0"
i965GM1="GM965 Embedded Graphics Chipset Function 1"
i965GM00="GLE960/GME965 Embedded Graphics Chipset Function 0"
i965GM01="GLE960/GME965 Embedded Graphics Chipset Function 1"
iGM450="GM45/GS45/GL40 Embedded Graphics Chipset Function 0"
iGM451="GM45/GS45/GL40 Embedded Graphics Chipset Function 1"
i4500="G45 Embedded Graphics Chipset Function 0"
i4501="G45 Embedded Graphics Chipset Function 1"
iELK0="Q45 Embedded Graphics Chipset Function 0"
iELK1="Q45 Embedded Graphics Chipset Function 1"
iQ4500="Q45 Embedded Graphics Chipset Function 0"
iQ4501="Q45 Embedded Graphics Chipset Function 1"

i900G0="US15 Embedded Graphics Chipset Function 0"

; Non Localizable Strings

SERVICE_BOOT_START = 0x0
SERVICE_SYSTEM_START = 0x1
SERVICE_AUTO_START = 0x2
SERVICE_DEMAND_START = 0x3
SERVICE_DISABLED = 0x4
SERVICE_KERNEL_DRIVER = 0x1
SERVICE_ERROR_IGNORE = 0x0; Continue on driver load fail
SERVICE_ERROR_NORMAL = 0x1; Display warn, but continue
SERVICE_ERROR_SEVERE = 0x2; Attempt LastKnownGood
SERVICE_ERROR_CRITICAL = 0x3; Attempt LastKnownGood, BugCheck

REG_EXPAND_SZ = 0x00020000
REG_MULTI_SZ = 0x00010000
REG_DWORD = 0x00010001
REG_SZ = 0x00000000
Appendix B Port Driver Attributes

B.1 Standard Port Driver Attributes

Port drivers are modules within the IEGD driver suite that control GMCH-specific modules such as GMCH LVDS, GMCH TV or add-on modules to GMCH. The table below lists the attributes available to port drivers. Some of these standard attributes can be customized for specific port drivers and are detailed in the following sections of this appendix.

In the following tables, device-specific (non-standard) attributes are highlighted in gray.

- "Internal LVDS Port Driver Attributes (Mobile chipsets only)" on page 215
- "CRT (Analog) Port Driver Attributes" on page 216
- "HDMI Port Driver Attributes" on page 216
- "Chrontel CH7307 Port Driver Attributes" on page 218
- "Chrontel CH7308 Port Driver Attributes" on page 218
- "Chrontel CH7315/CH7319/CH7320 Port Driver Attributes" on page 219
- "Chrontel CH7317 Port Driver Attributes" on page 219
- "Chrontel CH7022 Port Driver Attributes" on page 220
- "Silicon Image SiI 1362/SiI 1364 Port Driver DVI Attributes" on page 221

Note: Not all standard attributes are supported by all port drivers. Please see the following sections for details on the specific attributes supported by each port driver. Flat panel settings are specified via the FPINFO options of the configuration; please see Table 24 in Section 3.0.

Table 46. Standard Port Driver Attributes (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIGHTNESS</td>
<td>0</td>
<td>Brightness adjustment.</td>
</tr>
<tr>
<td>CONTRAST</td>
<td>1</td>
<td>Contrast adjustment.</td>
</tr>
<tr>
<td>HUE</td>
<td>2</td>
<td>Hue adjustment.</td>
</tr>
<tr>
<td>FLICKER</td>
<td>3</td>
<td>Setting to reduce flicker.</td>
</tr>
<tr>
<td>HPOSITION</td>
<td>4</td>
<td>Controls the horizontal position of the display.</td>
</tr>
<tr>
<td>VPOSITION</td>
<td>5</td>
<td>Controls the vertical position of the display.</td>
</tr>
<tr>
<td>HSCALE</td>
<td>6</td>
<td>Horizontal scaling ratio.</td>
</tr>
<tr>
<td>VSCALE</td>
<td>7</td>
<td>Vertical scaling ratio.</td>
</tr>
<tr>
<td>TVFORMAT</td>
<td>8</td>
<td>TV formats are device-specific.</td>
</tr>
<tr>
<td>DISPLAY TYPE</td>
<td>9</td>
<td>Allows selection of different displays for multi-display devices. This attribute is device-specific.</td>
</tr>
</tbody>
</table>
### Table 46. Standard Port Driver Attributes (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMA FILTER</td>
<td>10</td>
<td>TV Luma Filter adjustment.</td>
</tr>
<tr>
<td>CHROMA FILTER</td>
<td>11</td>
<td>ChromaFilter adjustment.</td>
</tr>
<tr>
<td>TEXT FILTER</td>
<td>12</td>
<td>Text Filter adjustment.</td>
</tr>
<tr>
<td>TV OUTPUT TYPE</td>
<td>14</td>
<td>TV output types. This attribute is device-specific.</td>
</tr>
<tr>
<td>SATURATION</td>
<td>15</td>
<td>Saturation adjustment.</td>
</tr>
<tr>
<td>PANEL FIT</td>
<td>18</td>
<td>Panel fitting. Yes or no.</td>
</tr>
<tr>
<td>SCALING RATIO</td>
<td>19</td>
<td>Output Scaling. Device-specific.</td>
</tr>
<tr>
<td>FP BACKLIGHT ENABLE</td>
<td>20</td>
<td>Enable flat panel backlight.</td>
</tr>
<tr>
<td>PANEL DEPTH</td>
<td>26</td>
<td>Can be either 18 or 24. 18 specifies 6-bit output per color, 24 specifies 8-bit output per color.</td>
</tr>
<tr>
<td>DUAL CHANNEL PANEL</td>
<td>27</td>
<td>Is it a dual channel panel or not? Takes 0 or 1.</td>
</tr>
<tr>
<td>GANG MODE</td>
<td>28</td>
<td>For achieving a Gang mode output using two digital ports.</td>
</tr>
<tr>
<td>GANG MODE EVEN ODD</td>
<td>29</td>
<td>Gang display even or odd. This attribute is to be set along with Gang mode (28). This mode (Gang Mode Even Odd) puts even pixels on one digital port and odd pixels on the other, and needs to be selected based on the display panel used.</td>
</tr>
<tr>
<td>SHARPNESS</td>
<td>31</td>
<td>Sharpness.</td>
</tr>
<tr>
<td>HWCONFIG</td>
<td>32</td>
<td>Hardware Configuration for sDVO encoders that support multiple configurations.</td>
</tr>
<tr>
<td>HORIZFILTER</td>
<td>33</td>
<td>Horizontal Filter.</td>
</tr>
<tr>
<td>VERTFILTER</td>
<td>34</td>
<td>Vertical Filter.</td>
</tr>
<tr>
<td>FRAME BUFFER GAMMA</td>
<td>35</td>
<td>Framebuffer gamma correction.</td>
</tr>
<tr>
<td>FRAME BUFFER BRIGHTNESS</td>
<td>36</td>
<td>Framebuffer brightness.</td>
</tr>
<tr>
<td>FRAME BUFFER CONTRAST</td>
<td>37</td>
<td>Framebuffer contrast.</td>
</tr>
<tr>
<td>2D FLICKER</td>
<td>39</td>
<td>Two-dimension flicker.</td>
</tr>
<tr>
<td>ADAPTIVE FLICKER</td>
<td>40</td>
<td>Adaptive flicker.</td>
</tr>
<tr>
<td>HORIZONTAL OVERSCAN</td>
<td>41</td>
<td>Horizontal overscan.</td>
</tr>
<tr>
<td>VERTICAL OVERSCAN</td>
<td>42</td>
<td>Vertical overscan.</td>
</tr>
<tr>
<td>SPREAD SPECTRUM CLOCKING</td>
<td>43</td>
<td>Spectrum Clocking</td>
</tr>
<tr>
<td>DOT_CRAWL</td>
<td>44</td>
<td>Dot crawl affects the edges of color and manifests itself as moving dots of color along these edges.</td>
</tr>
<tr>
<td>DITHER</td>
<td>45</td>
<td>Dither setting</td>
</tr>
<tr>
<td>PANEL PROTECT HSYNC</td>
<td>46</td>
<td>Horizontal sync panel protection</td>
</tr>
<tr>
<td>PANEL PROTECT VSYNC</td>
<td>47</td>
<td>Vertical sync panel protection</td>
</tr>
<tr>
<td>PANEL PROTECT PIXCLK</td>
<td>48</td>
<td>Pixel clock protection</td>
</tr>
<tr>
<td>LVDS PANEL TYPE</td>
<td>49</td>
<td>This is used to select SPWG vs. OpenLDI panel types. 0-SPWG 1-OpenLDI.</td>
</tr>
<tr>
<td>VGA 2X IMAGE</td>
<td>57</td>
<td>Controls VGA image in Gang mode.</td>
</tr>
<tr>
<td>TEXT ENHANCEMENT</td>
<td>58</td>
<td>Controls text tuning.</td>
</tr>
</tbody>
</table>
Table 46. Standard Port Driver Attributes (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTAIN ASPECT RATIO</td>
<td>59</td>
<td>This controls scaled image to match source image aspect ratio or full screen image.</td>
</tr>
<tr>
<td>FIXED TIMING</td>
<td>60</td>
<td>This indicates whether the attached display is a fixed timing display.</td>
</tr>
<tr>
<td>INTENSITY</td>
<td>70</td>
<td>This attribute provides a method to control the backlight intensity. It is not a method to turn on backlight but provides a way to adjust its value in percentages from 0% to 100%</td>
</tr>
</tbody>
</table>

Table 47. Internal LVDS Port Driver Attributes (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANELDEPTH</td>
<td>26</td>
<td>Specify Panel Depth based on connected panel.</td>
<td>Default is 18, however, on some GMCH chipsets 24-bit also is supported. For example, GM965 supports both 18 and 24-bit outputs.</td>
</tr>
<tr>
<td>DUALCHANNEL</td>
<td>27</td>
<td>Single or Dual Channel Panel</td>
<td>0 = Single, 1 = Dual, Default is 0.</td>
</tr>
<tr>
<td>Spread Spectrum Clocking</td>
<td>43</td>
<td>Spectrum Clocking</td>
<td>3-9 for US15W, 4-13 for GM45/GL40/GS45, 0-15 for other chipsets. Default = 7, Step = 1. Note: This setting changes the EMI characteristics, which can be measured with tuning equipment. The change will not necessarily be visible in the display.</td>
</tr>
<tr>
<td>DITHER</td>
<td>45</td>
<td>On and off Dithering</td>
<td>Dither=0 for 24-bit panels, Dither=1 for 18-bit panels. Default: dither = 1 for 18-bit panels, dither = 0 for 24-bit panels.</td>
</tr>
<tr>
<td>LVDS Panel Type</td>
<td>49</td>
<td>LVDS panel connector</td>
<td>0 = SPIG formatted LVDS output (default), 1 = OpenLDI unbalanced color mapping output. Default = 0.</td>
</tr>
<tr>
<td>FIXED TIMING</td>
<td>60</td>
<td>This indicates whether attached display is a fixed timing display.</td>
<td>0 = on, 1 = off.</td>
</tr>
</tbody>
</table>
B.2.2 CRT (Analog) Port Driver Attributes

Note: The analog port driver is included in the driver by default, unlike other port drivers available for selection as part of the driver configuration. It is a dynamically loadable port driver instead of being statically linked into the main driver, for example `iegdmini.sys` for Windows* or `iegd_drv.so` for Linux*.

Table 48. CRT (Analog) Port Driver Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIXED TIMING</td>
<td>60</td>
<td>Set this attribute if the attached display supports only one timing.</td>
<td>0 = Not a fixed timing display. 1 = Fixed timing display. Default is 0.</td>
</tr>
<tr>
<td>DETECT METHOD</td>
<td>32769</td>
<td>Controls display detection for the CRT.</td>
<td>0 = Uses DDC method first then Analog sense to detect the display 1 = DDC method only (Digital Sense method) by reading EDID 2 = Analog Sense only Default is 0.</td>
</tr>
</tbody>
</table>

B.2.3 HDMI Port Driver Attributes

B.2.3.1 Audio

The IEGD package does not include an HDMI audio driver, so you must obtain and install the driver yourself. The HDMI audio driver needs to support Intel HD Audio to be compatible with IEGD. You must also obtain Microsoft patch KB888111 to enable HDMI audio. IEGD supports only the Windows* HDMI audio driver.
B.2.3.2 SDVO-HDMI (CH7315)

IEGD supports only one type of SDVO-HDMI encoder, which is CH7315. SDVO-B cannot coexist with HDMI-B; SDVO-C cannot coexist with HDMI-C.

SDVO takes precedence over the HDMI port driver. If no SDVO encoder is available HDMI is automatically loaded by default (only in the GM45 Express chipset).

B.2.3.3 Internal HDMI

Internal HDMI is available only for the GM45 Express chipset. Only one HDMI port has audio at any one time. The first port in the port order has audio while the second port would have only display without audio.

Only one HDMI port has HDCP at any one time. The first port to receive a request for HDCP has HDCP enabled only in that port.

B.2.3.4 HDCP

HDCP is supported through the Certified Output Protection Protocol* (COPP) interface in Windows.

B.2.4 Internal TV Out Port Driver Attributes (Mobile chipsets only)

Table 49. Internal TV Out Port Driver Attributes (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIGHTNESS</td>
<td>0</td>
<td>Screen brightness</td>
<td>0-100. Default is 50.</td>
</tr>
<tr>
<td>CONTRAST</td>
<td>1</td>
<td>Color contrast</td>
<td>0-7. Default is 3.</td>
</tr>
<tr>
<td>HUE</td>
<td>2</td>
<td>Hue adjustment</td>
<td>0-100. Default is 0.</td>
</tr>
<tr>
<td>TV FLICK FILTER</td>
<td>3</td>
<td>TV Flicker Filter. The higher the value, the higher the amount of flicker filtering and text enhancement.</td>
<td>0-1000. Default is 999.</td>
</tr>
<tr>
<td>H POSITION</td>
<td>4</td>
<td>Horizontal Position. Increasing the value moves the image to the right and decreasing the value moves the image to the left.</td>
<td>0-511. Default is 64.</td>
</tr>
<tr>
<td>V POSITION</td>
<td>5</td>
<td>Vertical Position. The value represents the TV line number relative to the VGA vertical sync. Increasing the value moves the image down and decreasing the value moves the image up.</td>
<td>0-511. Default is 0.</td>
</tr>
</tbody>
</table>
Table 49. **Internal TV Out Port Driver Attributes (Sheet 2 of 2)**

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV FORMAT</td>
<td>8</td>
<td>TV formats are device-specific.</td>
<td>Default is NTSC-M (1).</td>
</tr>
<tr>
<td>TV OUTPUT</td>
<td>14</td>
<td>TV output types. This attribute is device-specific.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> TV output types are limited to S-Video and Composite for the VBIOS.</td>
<td>Default is S-VIDEO (2).</td>
</tr>
<tr>
<td>OVERSCAN/SCALING RATIO</td>
<td>19</td>
<td>Output Scaling.</td>
<td>0-1000. Default is 350.</td>
</tr>
</tbody>
</table>

**B.2.5 Chrontel CH7307 Port Driver Attributes**

The table below shows the attributes for the Chrontel CH7307* port driver.

*Note:* For flat panel backlight timing settings, please see Table 24 in Section 3.11.

Table 50. **Chrontel CH7307 Port Driver Attributes**

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread Spectrum Clocking</td>
<td>43</td>
<td>Spectrum clocking</td>
<td>0-15 Default = 0 Step = 1</td>
</tr>
<tr>
<td>FIXED TIMING</td>
<td>60</td>
<td>This indicates whether attached display is a fixed timing display.</td>
<td>0 = on 1 = off</td>
</tr>
</tbody>
</table>

**B.2.6 Chrontel CH7308 Port Driver Attributes**

The table below shows the attributes for the Chrontel CH7308* port driver.

*Note:* For FPINFO panel width, height, and backlight timing settings, please see Table 24 in Section 3.11.

Table 51. **Chrontel CH7308 Port Driver Attributes (Sheet 1 of 2)**

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS Color Depth</td>
<td>26</td>
<td>Panel depth</td>
<td>18 = 18 bits 24 = 24 bits Default = 18</td>
</tr>
<tr>
<td>DUAL_CHANNEL</td>
<td>27</td>
<td>Dual-channel pane</td>
<td>Default = 0</td>
</tr>
<tr>
<td>Spread Spectrum Clocking</td>
<td>43</td>
<td>Spectrum Clocking</td>
<td>0-15 Default = 7 Step = 1</td>
</tr>
<tr>
<td>Dither</td>
<td>45</td>
<td>Dither setting</td>
<td>Default = 0</td>
</tr>
<tr>
<td>HSync Panel Protection</td>
<td>46</td>
<td>Horizontal sync panel protection</td>
<td>Default = 0</td>
</tr>
<tr>
<td>VSync Panel Protection</td>
<td>47</td>
<td>Vertical sync panel protection</td>
<td>Default = 0</td>
</tr>
</tbody>
</table>
Port Driver Attributes

Table 51. Chrontel CH7308 Port Driver Attributes (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Clock Protection</td>
<td>48</td>
<td>Pixel clock protection</td>
<td>Default = 0</td>
</tr>
<tr>
<td>LVDS Panel Type</td>
<td>49</td>
<td>LVDS panel connector</td>
<td>0 = SPWG formatted LVDS output (default) 1 = OpenLDI unbalanced color mapping output Default = 0</td>
</tr>
<tr>
<td>Text Enhancement</td>
<td>58</td>
<td>Controls text tuning</td>
<td>0-4.</td>
</tr>
<tr>
<td>Fixed Timing</td>
<td>60</td>
<td>This indicates whether attached display is a fixed timing display.</td>
<td>0 = on 1 = off</td>
</tr>
</tbody>
</table>

Table 52. Chrontel CH7315/CH7319/CH7320 Port Driver Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Timing</td>
<td>60</td>
<td>This indicates whether attached display is a fixed timing display.</td>
<td>0 = on 1 = off</td>
</tr>
</tbody>
</table>

B.2.7 Chrontel CH7315/CH7319/CH7320 Port Driver Attributes

Note: For flat panel backlight timing settings, please see Table 24 in Section 3.11.

Table 53. Chrontel CH7317 Port Driver Attributes

The table below shows the attributes for the Chrontel CH7317 port driver.

Table 53. Chrontel CH7317 Port Driver Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA Bypass</td>
<td>9</td>
<td>Enables VGA bypass. To enable VGA Bypass, this configuration setting line must exist in the configuration file with the value of 2. Attribute 9 is used to enable selection of several possible display types based on what was supported on an SDVO device as defined in SDVO specifications. Default value of 2 represent VGA display.</td>
<td>1) Enable VGA Bypass</td>
</tr>
</tbody>
</table>
## Chrontel CH7022 Port Driver Attributes

The table below shows the attributes for the Chrontel CH7022 port driver.

### Table 54. Chrontel CH7022 Port Driver Attributes (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
</table>
| DISPLAY TYPE           | 9            | Allows selection of different displays for multi-display devices. This attribute is device-specific. **Note:** TV Out is not available with VBIOS. | 1) VGA Bypass (2)  
                         |              |                                                                                               | 2) Composite (4)   
                         |              |                                                                                               | 3) S-Video (8)     
                         |              |                                                                                               | 4) YPbPr (16)      | |
| BRIGHTNESS             | 0            | Brightness adjustment.                                                                       | 0-255                                    |
| SATURATION             | 15           | Saturation adjustment.                                                                       | 0-127                                    |
| HUE                    | 2            | Hue adjustment.                                                                              | 0-127                                    |
| CONTRAST               | 1            | Contrast adjustment.                                                                        | 0-127                                    |
| HORIZONTAL OVERSCAN    | 41           | Horizontal overscan.                                                                        | 0-47                                     |
| VERTICAL OVERSCAN      | 42           | Vertical overscan.                                                                           | 0-47                                     |
| Vertical Position/VPOSITION | 5       | Controls the vertical position of the display.                                               | 0-1023                                   |
| SHARPNESS              | 31           | Sharpness.                                                                                   | 0-7                                      |
| TV Chroma Filter       | 11           | ChromaFilter adjustment.                                                                    | 0-3                                      |
| TV Luma Filter         | 10           | TV Luma Filter adjustment.                                                                   | 0-2                                      |
| Adaptive Flicker Filter| 40           | Adaptive flicker.                                                                            | 0-7                                      |
| Dot Crawl              | 44           | Dot crawl affects the edges of color and manifests itself as moving dots of color along these edges. 1) Have Dot Crawl Run Freely (0)  
                         |              |                                                                                               | 2) Freeze Dot Crawl (1) |
| TV Output Format       | 8            | TV formats are device-specific.                                                               | Refer to the Attributes Page for the complete list of choices. |
## Table 54. Chrontel CH7022 Port Driver Attributes (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
</table>
| Analog Source          | 52           | VGA                                              | 1) No Data (0)  
2) Analog Source (1)  
3) Pre-recorded Packaged (2)  
4) Not Analog Pre-recorded (3) |
| Scan Information       | 53           | TV attributes are device specific.               | 1) No Data (0)  
2) Overscanned (1)  
3) Under scanned (2) |
| Picture Aspect Ratio   | 54           | The relative horizontal and vertical sizes.     | 1) No Data (0)  
2) 4:3 (1)  
3) 16:9 (2) |
| Active Format Ratio    | 55           | Output ratio.                                    | 1) No Data (0)  
2) Active Format (1)  
3) Square Pixels(8)  
4) 4:3 Center (9)  
5) 16:9 Center (10)  
6) 14:9 Center (11)  
7) 16:9 Letterbox (Top)(2)  
8) 14:9 Letterbox (Top)(3)  
9) 16:9 Letterbox (Center)  
10) 4:3 (with shoot and protect 14:9 center)  
11) 16:9 (with shoot and protect 14:9 center) (10610)  
12) 16:9 (with shoot and protect 4:3 center) |

### B.2.10 Silicon Image SiI 1362/SiI 1364 Port Driver DVI Attributes

**Note:** For flat panel backlight timing settings, please see Table 24 in Section 3.11.

## Table 55. Silicon Image SiI 1362/SiI 1364 Port Driver Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Description</th>
<th>Possible Ranges</th>
</tr>
</thead>
</table>
| FIXED TIMING   | 60           | This indicates whether attached display is a fixed timing display.           | 0 = on  
1 = off |

---

April 19, 2010

Document Number 274041-029 US 221
B.3 Chipset and Port Driver-specific Installation Information

B.3.1 Default Search Order

Note: See more information pertaining to port order in the description for “Port Devices (Available Ports, Port Order)” on page 38.

Table 56. Default Search Order

<table>
<thead>
<tr>
<th>Chipset</th>
<th>Default Search Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® PNV</td>
<td>ANALOG, LVDS</td>
</tr>
<tr>
<td>Intel® Q45/G41/G45</td>
<td>ANALOG, sDVOB, sDVOC</td>
</tr>
<tr>
<td>Intel® GM45/GL40/GS45</td>
<td>ANALOG, sDVOB, sDVOC, LVDS</td>
</tr>
<tr>
<td>Intel® US15W/US15WP/WPT</td>
<td>LVDS, sDVOB</td>
</tr>
<tr>
<td>Intel® Q35</td>
<td>ANALOG, sDVOB, sDVOC</td>
</tr>
<tr>
<td>Intel® GLE960/GME965</td>
<td>ANALOG, sDVOB, sDVOC, LVDS</td>
</tr>
<tr>
<td>Intel® Q965</td>
<td>ANALOG, sDVOB, sDVOC</td>
</tr>
<tr>
<td>Intel® 945GME/945GSE</td>
<td>ANALOG, sDVOB, sDVOC, LVDS</td>
</tr>
<tr>
<td>Intel® 945G</td>
<td>ANALOG, sDVOB, sDVOC</td>
</tr>
<tr>
<td>Intel® 915GV</td>
<td>ANALOG, sDVOB, sDVOC</td>
</tr>
<tr>
<td>Intel® 915GME</td>
<td>ANALOG, sDVOB, sDVOC, LVDS</td>
</tr>
<tr>
<td>Intel® 910GMLE</td>
<td>ANALOG, sDVOB, sDVOC, LVDS</td>
</tr>
</tbody>
</table>

B.3.2 Default GPIO Pin Pair Assignments

Table 57. Default GPIO Pin Pair Assignments

<table>
<thead>
<tr>
<th>Chipset</th>
<th>Default GPIO Pin Pair for EDID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sDVO/A</td>
</tr>
<tr>
<td>Intel® PNV</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® Q45/G41/G45</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® GM45/GL40/GS45</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® US15W/US15WP/WPT</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® Q35</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® GLE960/GME965</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® Q965</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® 945GME/945GSE</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® 945G</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® 915GV</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® 915G</td>
<td>N/A</td>
</tr>
<tr>
<td>Intel® 910GMLE</td>
<td>N/A</td>
</tr>
</tbody>
</table>
### B.3.3 Default I2C Device Address Byte Assignment

**Table 58. Default I\(^2\)C Device Address Byte Assignment**

<table>
<thead>
<tr>
<th>Port Driver</th>
<th>Default Device Address Bytes (DAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH7315, CH7317, CH7319, CH7320, CH7022</td>
<td>0x70 (for first sDVO device) 0x72 (for second sDVO device)</td>
</tr>
<tr>
<td>CH7307</td>
<td>0x70 (for first sDVO device) 0x72 (for second sDVO device)</td>
</tr>
<tr>
<td>CH7308</td>
<td>0x70 (for first sDVO device) 0x72 (for second sDVO device)</td>
</tr>
<tr>
<td>SiI 1362</td>
<td>0x70 (for first sDVO device) 0x72 (for second sDVO device)</td>
</tr>
<tr>
<td>SiI 1364</td>
<td>0x70 (for first sDVO device) 0x72 (for second sDVO device)</td>
</tr>
</tbody>
</table>
Appendix C Intel® 5F Extended Interface Functions

The BIOS provides a set of proprietary function calls to control operation of the extended features. These function calls all use AH = 5Fh in their designed interface for easy identification as a proprietary function.

These functions are designed to maintain maximum compatibility with the Desktop and Mobile Video BIOS. As such many of the definitions behave identically. When the behavior of the Embedded Video BIOS is not identical to the Desktop and Mobile Video BIOS it is noted.

In addition to these 5F functions, the Video BIOS also supports all 4F functions defined by the *VESA BIOS Extension (VBE) Core Functions Standard, Version 3.0* with the exception of the 0A function (Return VBE Protected Mode Interface). All other functions, from 00 through 09 and 0B are supported by the Video BIOS. Click on the following link to view the VBE 3.0 Core Functions Standard document.


The table below provides a summary of the IEGD supported Intel 5F functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Function Name</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F01h</td>
<td>Get Video BIOS Information</td>
<td>Gets VBIOS Build Information.</td>
<td>226</td>
</tr>
<tr>
<td>5F05h</td>
<td>Refresh Rate</td>
<td>Sets a new vertical refresh rate for a given mode and returns the current vertical refresh rate</td>
<td>227</td>
</tr>
<tr>
<td>5F10h</td>
<td>Get Display Memory Information</td>
<td>Returns information about the linear memory.</td>
<td>229</td>
</tr>
<tr>
<td>5F1Ch</td>
<td>BIOS Pipe Access</td>
<td>Sets the BIOS pipe access and returns the BIOS pipe access status.</td>
<td>229</td>
</tr>
<tr>
<td>5F29h</td>
<td>Get Mode Information</td>
<td>Returns information on the requested mode.</td>
<td>230</td>
</tr>
<tr>
<td>5F61h</td>
<td>Local Flat Panel Support Function</td>
<td>Supports local flat panel features.</td>
<td>230</td>
</tr>
<tr>
<td>5F68h</td>
<td>System BIOS Callback</td>
<td>Allows SoftBIOS to do any system callbacks through INT 15h</td>
<td>231</td>
</tr>
</tbody>
</table>
C.1 BIOS Extended Interface Functions

The BIOS provides a set of proprietary function calls to control operation of the extended features. These function calls all use AH = 5Fh in their designed interface for easy identification as a proprietary function.

These functions are designed to maintain maximum compatibility with the Desktop and Mobile Video BIOS. As such many of the definitions behave identically. When the behavior of the Embedded Video BIOS is not identical to the Desktop and Mobile Video BIOS it is noted.

C.1.1 5F01h – Get Video BIOS Information

This function returns the Video BIOS Build information.

Note: This function is an extension of the Desktop and Mobile Video BIOS. If register ECX does not contain ASCII characters “IEGD” then the VBIOS is not described by this specification.

Calling Register:

AX = 5F01h, Get Video Information function

Return Registers:

AX = Return Status (function not supported if AL != 5Fh):
    = 005Fh, Function supported and successful
    = 015Fh, Function supported but failed
EBX = 4 bytes Video BIOS Build Number ASCII string, e.g., ‘1000’
ECX = 4 bytes Embedded Identifier, ASCII string ‘IEGD’

Table 59. Summary of Intel 5F Extended Interface Functions (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Function</th>
<th>Function Name</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F31h</td>
<td>POST Completion Notification Hook</td>
<td>Signals the completion of video POST (Power On Self Test)</td>
<td>231</td>
</tr>
<tr>
<td>5F33h</td>
<td>Hook After Mode Set</td>
<td>Allows System BIOS to intercept Video BIOS at the end of a mode set.</td>
<td>231</td>
</tr>
<tr>
<td>5F35h</td>
<td>Boot Display Device Hook</td>
<td>Allows System BIOS to override video display default setting.</td>
<td>232</td>
</tr>
<tr>
<td>5F36h</td>
<td>Boot TV Format Hook</td>
<td>Allows System BIOS to boot TV in selected TV format state.</td>
<td>233</td>
</tr>
<tr>
<td>5F38h</td>
<td>Hook Before Set Mode</td>
<td>Allows System BIOS to intercept Video BIOS before setting the mode.</td>
<td>233</td>
</tr>
<tr>
<td>5F40h</td>
<td>Config ID Hook</td>
<td>Allows System BIOS to supply a configuration ID that is passed to the driver.</td>
<td>234</td>
</tr>
</tbody>
</table>
C.1.2 5F05h – Refresh Rate

This function sets a new vertical refresh rate for a given mode and returns the current vertical refresh rate and available refresh rate for a given non-VGA mode.

C.1.2.1 5F05h, 00h – Set Refresh Rate

This sub-function sets a new default refresh rate for the selected pipe. If the mode is currently active, the CRT controller and other registers will be automatically programmed setting the requested refresh rate.

Note: This function is not entirely compatible with the Desktop and Mobile versions. It is not possible to set the refresh rate for a given mode in advance. This function sets the “desired” refresh rate which will be applied to all subsequent mode sets when possible. If the mode provided in BL is the current mode, then a mode change will be automatically performed.

Calling Register:

 AX = 5F05h, Refresh Rate function
 BH = 00h, Set Refresh Rate sub-function
 BL = Mode Number
 ECX = Refresh rate (indicated by setting one bit):
   Bits 31 - 9 = Reserved
   Bit 8 = 120 Hz
   Bit 7 = 100 Hz
   Bit 6 = 85 Hz
   Bit 5 = 75 Hz
   Bit 4 = 72 Hz
   Bit 3 = 70 Hz
   Bit 2 = 60 Hz
   Bit 1 = 56 Hz
   Bit 0 = 43 Hz (Interlaced - Not supported)

Return Registers:

 AX = Return Status (function not supported if AL != 5Fh):
   = 005Fh, Function supported and successful
   = 015Fh, Function supported but failed
C.1.2.2  5F05h, 01h – Get Refresh Rate

This sub-function returns current vertical refresh rate for the selected pipe and available refresh rates information for a given Non-VGA mode.

Note: This sub-function returns a status of supported but failed (AX = 015Fh) if executed with a standard VGA mode.

Calling Registers:

- AX = 5F05h, Refresh Rate function
- BH = 01h, Get Refresh Rate sub-function
- BL = Mode number

Return Registers:

- AX = Return Status (function not supported if AL != 5Fh):
  - = 005Fh, Function supported and successful
  - = 015Fh, Function supported but failed
- EBX = Available refresh rates (indicated by one or more bits set):
  - Bits 31 - 9 = Reserved
  - Bit 8 = 120 Hz
  - Bit 7 = 100 Hz
  - Bit 6 = 85 Hz
  - Bit 5 = 75 Hz
  - Bit 4 = 72 Hz
  - Bit 3 = 70 Hz
  - Bit 2 = 60 Hz
  - Bit 1 = 56 Hz
  - Bit 0 = 43 Hz (Interlaced - Not supported)
- ECX = Current refresh rate (see EBX for bit definitions)
C.1.3 5F10h – Get Display Memory Information

This function returns information regarding the linear memory starting address, size and memory mapped base address.

**Calling Register:**

AX = 5F10h, Get Linear Display Memory Information function

**Return Registers:**

AX = Return Status (function not supported if AL != 5Fh):

= 005Fh, Function supported and successful
= 015Fh, Function supported but failed
ESI = Display memory base address
ECX = Total physical display memory size (in bytes)
EDX = Available display memory size (in bytes)
EDI = Memory Mapped I/O Base Address
EBX = Stride (memory scan line width in bytes)

C.1.4 5F1Ch – BIOS Pipe Access

This function will set the BIOS pipe access or return the BIOS pipe access status.

C.1.4.1 5F1Ch, 00h – Set BIOS Pipe Access

This sub-function will set the currently selected pipe. All 5f functions operate on the currently selected pipe.

When not in clone modes this value cannot be set.

**Calling Registers:**

AX = 5F1Ch, BIOS Pipe Access function
BH = 00h, Set BIOS Pipe Access sub-function
CH = BIOS Pipe access:
    = 00h, Pipe A
    = 01h, Pipe B

**Return Registers:**

AX = Return Status (function not supported if AL != 5Fh):

= 005Fh, Function supported and successful
= 015Fh, Function supported but failed

C.1.4.2 5F1Ch, 01h – Get BIOS Pipe Access

This sub-function will return the currently selected pipe.

**Calling Registers:**

AX = 5F1Ch, BIOS Pipe Access function
BH = 01h, Get BIOS Pipe Access sub-function

**Return Registers:**

AX = Return Status (function not supported if AL != 5Fh):

= 005Fh, Function supported and successful
= 015Fh, Function supported but failed
CH = BIOS Pipe access:
    = 00h, Pipe A
    = 01h, Pipe B
C.1.5 5F29h – Get Mode Information

This function returns the requested mode’s resolution, color depth, and maximum required bandwidth using its current refresh rate. This function is applied to extended-graphics modes only. If the mode number is not an extended graphics mode, the function will return failure.

**Calling Registers:**
- AX = 5F29h, Get Mode Information function
- BH = Mode To Use:
  - = 80h, Current Mode
  - = 00h - 7Fh, Given Mode Number

**Return Registers:**
- AX = Return Status (function not supported if AL != 5Fh):
  - = 005Fh, Function supported and successful
  - = 015Fh, Function supported but failed
- EBX bits 31 - 16 = Mode horizontal (X) resolution in pixels
- EBX bits 15 - 0 = Mode vertical (Y) resolution in pixels
- ECX bits 31 - 16 = Maximum bandwidth in megabytes per second
- ECX bits 15 - 0 = Color depth in bits per pixel

C.1.6 5F61h – Local Flat Panel Support Function

This function supports local flat panel only features.

**Note:**
Only Subfunction 5h of the 5f61h interface is supported for the Embedded vBIOS.

C.1.6.1 5F61h, 05h – Get Configuration ID

This function is used to return the Configuration ID.

**Note:**
This function is known as “Get Local Flat Panel Number” in the Desktop and Mobile Video BIOS. This function performs a similar purpose however, the configuration IDs have no pre-defined meaning. The Configuration ID is reported to the Embedded Graphics Driver and will be used as described in the *Intel® Embedded Graphics Drivers and Video BIOS User’s Guide*.

**Calling Registers:**
- AX = 5F61h, Local Flat Panel Support function
- BH = 05h, Get Config ID Subfunction

**Return Registers:**
- AX = Return Status (function not supported if AL != 5Fh):
  - = 005Fh, Function supported and successful
  - = 015Fh, Function supported but failed
- BL = Config ID
C.1.7 5F68h – System BIOS Callback

This is a generic function that allows SoftBIOS to do any system callbacks through INT 15h. The Input/Output of this function is dependent on the definition of the desired INT 15h hook except for the EAX register.

Calling Registers:

\[
\begin{align*}
\text{AX} & = 5F68h, \text{System BIOS Callback Function} \\
\text{EAX} & = \text{System BIOS INT 15h Hook Function}
\end{align*}
\]

Return Registers:

\[
\begin{align*}
\text{AX} & = \text{Return Status (function not supported if AL \neq 5Fh)}: \\
& = 005Fh, \text{Function supported and successful} \\
& = 015Fh, \text{Function supported but failed}
\end{align*}
\]

C.2 Hooks for the System BIOS

The video BIOS performs several system BIOS interrupt function calls (interrupt 15h hooks). Each function provides the system BIOS with the opportunity to gain control at specific times to perform any custom processing that may be required. After each interrupt hook, the system BIOS must return control to the video BIOS. INT 10h calls could be made within the INT 15h hook calls provided that it is not recursive and thus cause a deadlock.

C.2.1 5F31h – POST Completion Notification Hook

This hook signals the completion of video POST (Power On Self Test). The hook executes after the sign-on message is displayed and PCI BIOS resizing.

Calling Registers:

\[
\begin{align*}
\text{AX} & = 5F31h, \text{POST Completion Notification Hook}
\end{align*}
\]

Return Registers:

\[
\begin{align*}
\text{AX} & = \text{Return Status (function not supported if AL \neq 5Fh)}: \\
& = 015Fh, \text{Function supported but failed} \\
& = 005Fh, \text{Function supported and successful}
\end{align*}
\]

C.2.2 5F33h – Hook After Mode Set

This hook allows the system BIOS to intercept the video BIOS at the end of a mode set.

Calling Registers:

\[
\begin{align*}
\text{AX} & = 5F33h, \text{Hook After Mode Set} \\
\text{BH} & = \text{Number of character columns} \\
\text{BL} & = \text{Current mode number} \\
\text{CH} & = \text{Active display page}
\end{align*}
\]

Return Registers:

\[
\begin{align*}
\text{AX} & = \text{Return Status (function not supported if AL \neq 5Fh)}: \\
& = 015Fh, \text{Function supported but failed} \\
& = 005Fh, \text{Function supported and successful}
\end{align*}
\]
C.2.3 5F35h – Boot Display Device Hook

This hook allows the system BIOS to override the video display default setting. The graphics BIOS will set the returned video display during POST (power up initialization).

Note: This function is not entirely compatible with the Desktop and Mobile Video BIOS. The bits in CL have a configurable mapping to the Port Numbers as defined in the Intel® Embedded Graphics Drivers and Video BIOS User’s Guide. The assigned meanings used in the Desktop specification can be duplicated with a correct configuration. The values below are the default values if no “Common To Port” mapping is provided.

Calling Registers:

AX = 5F35h, Boot Display Device Hook

Return Registers:

AX = Return Status (function not supported if AL != 5Fh);
  = 005Fh, Function supported and successful
  = 015Fh, Function supported but failed
CL = Display Device Combination to boot (1 = Enable display, 0 = Disable display):
  = 00h, VBIOS Default
  Bit 7 - 6 = Reserved
  Bit 5 = Port 5 (or common_to_port[5])
  Bit 4 = Port 4 (or common_to_port[4])
  Bit 3 = Port 3 (or common_to_port[3])
  Bit 2 = Port 2 (or common_to_port[2])
  Bit 1 = Port 1 (or common_to_port[1])
  Bit 0 = Port 0 (or common_to_port[0])
C.2.4 5F36h – Boot TV Format Hook

This hook allows the system BIOS to boot TV in selected TV format state.

**Calling Registers:**
- AX = 5F36h, Boot TV Format Hook

**Return Registers:**
- AX = Return Status (function not supported if AL != 5Fh):
  - 015Fh, Function supported but failed
  - 005Fh, Function supported and successful
- BL = TV Format requested:
  - 00h, No Preference
  - 01h, NTSC_M
  - 11h, NTSC_M_J
  - 21h, NTSC_433
  - 31h, NTSC_N
  - 02h, PAL_B
  - 12h, PAL_G
  - 22h, PAL_D
  - 32h, PAL_H
  - 42h, PAL_I
  - 52h, PAL_M
  - 62h, PAL_N
  - 72h, PAL_60
  - 03h, SECAM_L
  - 13h, SECAM_L1
  - 23h, SECAM_B
  - 33h, SECAM_D
  - 43h, SECAM_G
  - 53h, SECAM_H
  - 63h, SECAM_K
  - 73h, SECAM_K1

C.2.5 5F38h – Hook Before Set Mode

This hook allows the system BIOS to intercept the video BIOS before setting the mode.

**Calling Registers:**
- AX = 5F38h, Hook Before Set Mode
- CL = New video mode to be set

**Return Registers:**
- AX = Return Status (function not supported if AL != 5Fh):
  - 015Fh, Function supported but failed
  - 005Fh, Function supported and successful
C.2.6 5F40h – Config ID Hook

This function is known as “Boot Panel Type Hook” in the Desktop and Mobile Video BIOS. It allows the system BIOS to supply a configuration ID that will eventually be passed to the driver. This configuration ID is unused by the Video BIOS; however, it alters the behavior of the driver as described in the Intel® Embedded Graphics Drivers and Video BIOS User's Guide.

**Calling Registers:**

- AX = 5F40h, Config ID Hook

**Return Registers:**

- AX = Return Status (function not supported if AL != 5Fh):
  - = 005Fh, Function supported and successful
  - = 015Fh, Function supported but failed
- CL = Configuration ID
Appendix D 2D/3D API Support

This appendix provides information on supported and non-supported OpenGL and OpenGL ES APIs. See Section 7.6.10, “OpenGL Support” on page 196 for additional information.

D.1 2D Support

IEGD provides 2D capabilities on Linux through UXA and on Windows through DirectX/GDI.

D.2 3D Support

IEGD provides 3D capabilities on Linux, Windows, and Windows CE through several industry-standard APIs, such as OpenGL, OpenGL ES, Direct3D, and D3DMobile. These APIs are described in the following sections.

D.2.1 OpenGL APIs

The following OpenGL versions are supported:

- Version 1.3 on all Embedded Intel® Architecture (eIA) chipsets (Linux only)
- Version 1.4 on 915GV, 915GM, 945G, 945GM, Q965, GLE960/GME965 (Linux only) and Intel® Atom™ Processor 400 and 500 Series
- Version 1.5 on Q965, GLE960/GME965, Q45/G41/G45, GM45/GL40/GS45, and Q35 (Linux only)
- Version 2.0 on US15W/US15WP/WPT (Linux and Windows), Q35, Q45 and GM45 (Linux only)

For general OpenGL information, visit http://www.opengl.org/about/overview/.

<table>
<thead>
<tr>
<th>Table 60. Supported Intel® OpenGL APIs (Sheet 1 of 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Supported API Name(s)</strong></td>
</tr>
<tr>
<td>GL_3DFX_texture_compression_FXT1*</td>
</tr>
<tr>
<td>GL_ARB_depth_texture</td>
</tr>
<tr>
<td>GL_ARB_fragment_program (965 or later only)</td>
</tr>
<tr>
<td>GL_ARB_multitexture</td>
</tr>
<tr>
<td>GL_ARB_occlusion_query (965 or later only)</td>
</tr>
<tr>
<td>GL_ARB_point_sprite</td>
</tr>
<tr>
<td>GL_ARB_shadow</td>
</tr>
<tr>
<td>GL_ARB_texture_env_dot3</td>
</tr>
<tr>
<td>GL_ARB_texture_border_clamp</td>
</tr>
<tr>
<td>*Not supported on Intel US15W series chipsets.</td>
</tr>
</tbody>
</table>
## Supported Intel® OpenGL APIs (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Supported API Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL_ARB_texture_compression</td>
</tr>
<tr>
<td>GL_ARB_texture_cube_map</td>
</tr>
<tr>
<td>GL_ARB_texture_env_add</td>
</tr>
<tr>
<td>GL_ARB_texture_env_combine</td>
</tr>
<tr>
<td>GL_ARB_texture_env_crossbar</td>
</tr>
<tr>
<td>GL_ARB_transpose_matrix</td>
</tr>
<tr>
<td>GL_ARB_vertex_buffer_object</td>
</tr>
<tr>
<td>GL_ARB_vertex_program (965 or later only)</td>
</tr>
<tr>
<td>GL_EXT_abgr</td>
</tr>
<tr>
<td>GL_EXT_bgra</td>
</tr>
<tr>
<td>GL_EXT_blend_color</td>
</tr>
<tr>
<td>GL_EXT_blend_func_separate</td>
</tr>
<tr>
<td>GL_EXT_blend_minmax</td>
</tr>
<tr>
<td>GL_EXT_blend_subtract</td>
</tr>
<tr>
<td>GL_EXT_clip_volume_hint*</td>
</tr>
<tr>
<td>GL_EXT_compiled_vertex_array</td>
</tr>
<tr>
<td>GL_EXT_cull_vertex</td>
</tr>
<tr>
<td>GL_EXT_fog_coord</td>
</tr>
<tr>
<td>GL_EXT_multi_draw_arrays</td>
</tr>
<tr>
<td>GL_EXT_packed_pixels</td>
</tr>
<tr>
<td>GL_EXT_rescale_normal</td>
</tr>
<tr>
<td>GL_EXT_secondary_color</td>
</tr>
<tr>
<td>GL_EXT_separate_specular_color</td>
</tr>
<tr>
<td>GL_EXT_shadow_funcs</td>
</tr>
<tr>
<td>GL_EXT_stencil_two_side*</td>
</tr>
<tr>
<td>GL_EXT_texture_compression_s3tc</td>
</tr>
<tr>
<td>GL_EXT_texture_env_add</td>
</tr>
<tr>
<td>GL_EXT_texture_filter_anisotropic</td>
</tr>
<tr>
<td>GL_EXT_texture_lod_bias (965 or later only)</td>
</tr>
<tr>
<td>GL_NV_blend_square</td>
</tr>
<tr>
<td>GLX_ARB_get_proc_address</td>
</tr>
</tbody>
</table>

*Not supported on Intel US15W series chipsets.
Table 61. **Non-Supported Intel® OpenGL APIs**

<table>
<thead>
<tr>
<th>Non-Supported API Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL_ARB_color_buffer_float</td>
</tr>
<tr>
<td>GL_ARB_fragment_program_shadow</td>
</tr>
<tr>
<td>GL_ARB_shader_objects</td>
</tr>
<tr>
<td>GL_ARB_shading_language_100</td>
</tr>
<tr>
<td>GL_ARB_textures_non_power_of_two</td>
</tr>
<tr>
<td>GL_EXT_paletted_texture</td>
</tr>
<tr>
<td>GL_WIN_swap_hint</td>
</tr>
<tr>
<td>WGL_ARB_buffer_region</td>
</tr>
<tr>
<td>WGL_ARB_extensions_string</td>
</tr>
<tr>
<td>WGL_ARB_make_current_read</td>
</tr>
<tr>
<td>WGL_ARB_pbuffer</td>
</tr>
<tr>
<td>WGL_ARB_pixel_format</td>
</tr>
<tr>
<td>WGL_EXT_swap_control</td>
</tr>
</tbody>
</table>

**D.2.2 OpenGL ES 1.1**

The following chipsets support OpenGL ES 1.1:

- US15W/WP/WPT

Except where noted by individual chipsets, the following OpenGL ES 1.1 extensions are supported:

- GL_OES_byte_coordinates
- GL_OES_fixed_point
- GL_OES_single_precision
- GL_OES_matrix_get
- GL_OES_read_format
- GL_OES_compressed_paletted_texture
- GL_OES_point_size_array
- GL_OES_point_sprite
- GL_OES_draw_texture
- GL_OES_query_matrix
- GL_OES_blend_equation_separate
- GL_OES_blend_func_separate
- GL_OES_blend_subtract
- GL_OES_framebuffer_object
- GL_OES_texture_cube_map
- GL_OES_texture_env_crossbar
- GL_OES_texture_mirrored_repeat
- GL_OES_depth24
- GL_OES_depth32
D.2.3 OpenGL ES 2.0

The following chipsets support OpenGL ES 2.0:

- US15W/WP/WPT

Except where noted by individual chipsets, the following OpenGL ES 2.0 extensions are supported:

- GL_OES_single_precision
- GL_OES_compressed_paletted_texture
- GL_OES_depth24
- GL_OES_depth32
- GL_OES_element_index_uint
- GL_OES_fbo_render_mipmap
- GL_OES_mapbuffer
- GL_OES_rgb8_rgba8
- GL_OES_stencil1
- GL_OES_stencil4
- GL_OES_texture_3D
- GL_OES_texture_npot
- GL_EXT_texture_filter_anisotropic
- GL_EXT_texture_type_2_10_10_10_REV
- GL_OES_depth_texture
- GL_OES_standard_derivatives
### Table 62. Non-Supported Intel® OpenGL ES APIs on US15W/WP/WPT

<table>
<thead>
<tr>
<th>Non-Supported API Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL_OES_stencil_wrap</td>
</tr>
<tr>
<td>GL_OES_compressed_ETC1_RGB8_texture</td>
</tr>
<tr>
<td>GL_OES_matrix_palette</td>
</tr>
<tr>
<td>GL_OES_EGL_image</td>
</tr>
<tr>
<td>GL_AMD_compressed_3DC_texture</td>
</tr>
<tr>
<td>GL_AMD_compressed_ATC_texture</td>
</tr>
<tr>
<td>GL_OES_texture_float</td>
</tr>
<tr>
<td>GL_OES_texture_half_float</td>
</tr>
<tr>
<td>GL_OES_texture_float_linear</td>
</tr>
<tr>
<td>GL_OES_texture_half_float_linear</td>
</tr>
<tr>
<td>GL_OES_vertex_half_float</td>
</tr>
<tr>
<td>GL_OES_vertex_type_10_10_10_2</td>
</tr>
<tr>
<td>GL_OES_fragment_precision_high</td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
Appendix E Framebuffer Overlay Blending

This appendix describes behavior of the IEGD Framebuffer Overlay Blending (FB_BLEND_OVL) feature.

E.1 How Overlay Works

The overlay is visible as if “on top” of the frame buffer, appearing only where the color key matches.

The overlay plane is actually behind the display plane (last in Z-order). The framebuffer overrides all overlay pixels in the pipe except where the color key matches.
E.2 About Framebuffer in “Blend” Mode

IEGD has always expressed the mode setting operation as Width X Height at 8, 16, or 32 bpp. In all bit depths, IEGD does not expose any mode with an alpha channel (i.e., 32 bpp = X8R8G8B8, not A8R8G8B8).

However, the hardware does support 32 bpp with alpha (== A8R8G8B8).

How is this used? The Display Plane in ARGB32 contains per-pixel Alpha to be blended with all other planes on the same display pipeline. This “Alpha” data is dictated by the application.

If all the Alpha channel (8 MSbits) for Display A and Cursor A were zero (0x00), this means those two planes are completely transparent.

If all the Alpha channel (8 MSbits) for Display A and Cursor A were max (0xFF) – this means it is completely opaque.
Framebuffer Overlay Blending

If all the Alpha channel (8 MSbits) for Display A and Cursor A were 50% (0x80) – this means it is 50% transparent.

Note: Destination Chroma-keying will not work with the FB-Blend-Ovl feature.
E.3 Example to Enable the FB_BLEND_OVL Feature

Note: This feature applies to the Intel® System Controller Hub US15W only.

1. Enable the feature:
   a. Set the display mode to Width x Height @ 32 bpp.
   b. Edit the Windows XP .inf or Windows CE .reg or Linux Xorg.conf file and add the following line in the same section where you find "DisplayConfig":
      "FbBlendOvl" = 1

2. Boot the OS. An example is shown below.

3. Run a video with any video stream, as long as overlay is being used.
Framebuffer Overlay Blending

4. Run a D3D/OGL application.
   Ensure that the application has been modified so that the render target has valid alpha. Use an alpha value such as 0.5 (0x80 = 50% transparency).

   The 3D output appears on the display, carries a 50% transparency, and is blended with the overlay. The overlay is behind and 3D output is on top – on the display plane.

E.4 Summary

You must use a 3D API to get the application on the framebuffer with a valid alpha value to blend on top of the video overlay. 2D API is not supported.

If the application has an alpha value of 0.0 or 1.0, it is either semi-transparent or fully opaque – which is useless because color keying can give you the same effect.

On any operating system you can use OS APIs that already exist to directly write alpha data to the framebuffer if you want.