iSCSI Quick-Connect Guide for Red Hat Linux

A supplement for Network Administrators

The Intel® Networking Division

Revision 1.0
March 2013
Legal

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com.

Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008-2013. Intel Corporation. All Rights Reserved.

Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2013</td>
<td>1.0</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
Contents

1. Introduction and Intended Audience .. 4
2. iSCSI Basics.. 4
3. Administrative Ownership ... 4
4. Setting up the Network... 5
5. Obtaining the IQN and IP Address in Red Hat Linux 6.2 6
6. Operating System Setup for Red Hat Linux 6.2 7
7. Summary... 9
1 Introduction and Intended Audience

As a supplement to the Red Hat Storage Administration Guide, this paper provides an introduction to iSCSI storage connectivity from a Red Hat Storage Server administrator’s perspective and shows the basic connection from the Linux operating system to an iSCSI storage target.

As part of a series of iSCSI Quick Connect guides for multiple operating systems, our goal is to discuss the connection from a host perspective and review the requirements provided by and to storage and network administrators. Regrettably, switch and storage configuration are outside the scope of this paper.

The intended audience is experienced system administrators familiar with server, network, datacenter and SAN storage concepts and technologies.

2 iSCSI Basics

iSCSI has been in development since the early 2000s and Intel has been offering iSCSI solutions for over a decade. It is a flexible and powerful Storage Area Networking (SAN) protocol providing data availability, performance and ease of use. As a routable storage protocol, iSCSI imposes no inherent distance limitations and is scalable across LAN and WAN infrastructures.

The iSCSI Qualified Name (IQN) is typically shown as the literal IQN string plus date, reverse domain, and optional text such as the storage target name as shown in the example below. The IQN or iSCSI name is used in the assignment of the Logical Unit Number (LUN) on the external storage. In some applications, the IQN can be customized. Basic iSCSI configuration includes setup of the storage array by creating the LUN and initiator group then assigning the server’s iSCSI IQN to that initiator group.

<table>
<thead>
<tr>
<th>Naming</th>
<th>String defined by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Date</td>
</tr>
<tr>
<td>Auth</td>
<td>"example.com" naming authority</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>iqn.1998-01.com.microsoft:myservername-123abc0</td>
<td></td>
</tr>
</tbody>
</table>

3 Administrative Ownership

Basic iSCSI connectivity touches three technology disciplines; server, network, and storage. The server administrator provides the IQN to the storage administrator and sets up the host with an IP address provided by the network administrator. Besides IP assignment, the network administrator ensures the network is setup end-to-end. The storage administrator creates the LUN and host entity then assigns each to a storage group to create the LUN masking and provides the target IQN to the server administrator.
| Server Administrator | a. Assign the host IP address provide by the network administrator
| b. Identify the host IQN
| c. Provide the IQN and IP address to storage administrator
| d. Set discovery IP address for host for basic storage connection
| e. Setup the host to connect to the storage target and LUN |
| Network Administrator | a. Assign host IP address to server administrator
| b. Ensure end-to-end connectivity of host and storage |
| Storage Administrator | a. Add host it “Host List”
| i. Assign IP address to host entity
| ii. Assign IQN to host entity
| b. Create a LUN
| c. Create a “Storage Group”
| i. Assign host entity to the Storage Group
| ii. Assign LUN to the Storage Group |

Figure 1: Administrative Ownership Table

4 Setting up the Network

The network administrator owns IP address assignment, network switch port configuration, and end-to-end connectivity between the storage array and the server. iSCSI network speeds are typically 1 or 10 gigabit. The server administrator provides speed requirements to the network administrator and enables the iSCSI initiator.
Obtaining the IQN and IP Address in Red Hat Linux 6.2

This section shows how to obtain an IQN in the Red Hat Linux operating system. Beginning with a command line interface (CLI), enter “cat /etc/iscsi/initiatorname.iscsi” at the prompt as shown in Figure 2.

```
[root@fmsnet02 ~]# cat /etc/iscsi/initiatorname.iscsi
InitiatorName=iqn.1994-05.com.redhat:4d652a497cc7
[root@fmsnet02 ~]#
```

Figure 2: Write performance on 12 node cluster

Next, enter ifconfig at the prompt to obtain the IP address as shown in Figure 3.

```
[root@fmsnet02 ~]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:19:259:FA:49:08
inet6 addr: fe00::215:17ff:feff:a900/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
 RX packets:418634 errors:0 dropped:0 overruns:0 frame:0
 TX packets:108463 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:447667886 (426.9 MiB) TX bytes:110168567 (105.6 MiB)
 Memory:b202000-0 b204000

eth1 Link encap:Ethernet HWaddr 00:20:3e:4e:6e:28
inet addr:fe80::215:17ff:feff:a900/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1977046 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1928084 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:18166766 (173.4 MiB) TX bytes:389059998 (371.0 MiB)
```

Figure 3: iSCSI Initiator Properties

The server administrator provides both the IQN and the IP address to the Storage Administrator. The storage administrator uses the IQN and IP address to assign a LUN to the host.
This section shows the steps required on the server once the storage administrator has created the storage target. The storage administrator provides the Target IP address and IQN once the target has been created. All commands comply with the open-iscsi.org syntax.

Return to the command line interface and enter the command set “service iscsi restart” to ensure the iSCSI service is running as shown in Figure 4.

Figure 4

Next enter the command set “iscsiadm --mode discoverydb --type sendtargets --portal 192.168.25.250 –discover” to discover record targets on the given port 192.168.25.250 as shown in Figure 5.

Figure 5

Use the IQN provided by the storage administrator to enter the command set “iscsiadm --mode node --targetname iqn.1992-4.com.emc:cx.apm00101001768.a8 --portal 192.168.25.250 --login” to login to the portal as shown in Figure 6.

Note that a login to the incorrect portal results in a failure.

Figure 6
Verify the attached iSCSI LUNs and other related information for the iSCSI session by running the command “iscsiadm -m session -P 3” as shown in Figure 7. There are four session types; 0 (default), 1, 2, and 3. Session type 3 will show any attached SCSI devices plus the information from each of the other session types.

![Figure 7]

```
[root@fmanet02 ~]# iscsiadm -m session -P 3 | more
version 2.0-870
Target: ign.1992-04.com.emc:cx.6p0010100170c.a0
Persistent Portal: 192.168.25.250:3260,3
*********
Interface:
*********
 Iface Name: default
 Iface Transport: tcp
 Iface Initiatorname: ign.1994-05.com.redhat:4a652a497ce7
 Iface IPaddress: 192.168.25.2
 Iface WWIdress: <empty>
 Iface Ntsdev: <empty>
 SID: 5
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED IN
 Internal iscsid Session State: NO CHANGE
*********
Negotiated iSCSI param:
*********
HeaderDigest: None
DataDigest: None
MaxRecDataSegmentLength: 26144
MaxOutDataSegmentLength: 65536
FirstBurstLength: 0
MaxBurstLength: 26144
ImmediateData: No
InitiatorKey: Yes
MaxOutstandingRJT: 1
*********
Attached SCSI devices:
*********
Host Number: 14 State: running
```

```
scsi14 Channel 00 Id 0 Lun 0
Attached scsi disk sdb  State: running
```
Use the fdisk command to create a primary partition on the attached SCSI device (sdb) found in the previous step using the command set “fdisk /dev/sdb” as shown below in Figure 8.

![Figure 8](image)

Make and mount the file system like any other new drive.

7 Summary

Intel’s Server adapter line, in both 1 gigabit and 10 gigabit solutions, fully supports a wide range of storage capabilities. Customers appreciate the configuration ease of both Ethernet support and Windows iSCSI storage support in a single adapter.

For more command sets on Linux iSCSI go to http://www.open-iscsi.org/docs/README or see the [Red Hat Enterprise Linux 6 Storage Administration Guide](http://www.redhat.com/docs/).