PORTABLE FTP SERVER
TECHNICAL REFERENCE

interniche <)

technologies, inc.

51 E Campbell Ave
Suite 160
Campbell, CA. 95008

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://mww.iniche.com
support: 408.540.1160

fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We gppreciate any feedback you may have for improvements.
Please send your commentsto support@iniche.com.

The software described in this document is furnished under alicense and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Portions of the InterNiche source code are provided under the copyright of the respective
owners and are aso acknowledged in the appropriate source files:

Copyright © 1984, 1985, 1986 by the Massachusetts I nstitute of Technology

Copyright © 1982, 1985, 1986 by the Regents of the University of California

All Rights Reserved
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in al such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of CMU
not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

Trademarks

All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of thisinformation. The use of atermin
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 2

TABLE OF CONTENTS
1. OVERVIEW

1.1 Termsand Conventions
1.2 A Note About DOS

1.3What Doesan FTP Server Do?
1.4 What IsaPort?

(o2 @2 TN &) I~ AN

1.5 Requirements
1.5.1 Memory ReqUIreMENtS- - - ----=== == - oo mmmmm o oo e
1.5.2 Operating System Requirements --------=============mmmmmmm oo

~N O

1.6 Demo Package Directories List
2. STEPBY STEP PORTING GUIDE

2.1 Port Dependent Files
2.2 SourceFileLists

O O O

2.3 Master FTP Server Port File: ftpport.h
2.3.1 Standard Macros and Definitions -----------======m oo mmmmmmm oo
2.3.2 Memory AllOCati ON - ---==== === == === oo o o o o e e
2.3.3 CPU Architecture -------=== == oo oo oo e
2.3.4 Debugging AlQS === - == === == oo e o
2.3.5 Features and OptioNS -----=== === ==== == mm oo oo e
2.3.6 NEWOIK AP === - - oo oo oo oo o e

24 ftpport.c- The“glue’ Layers
241 TCP glue ROULINES- - === == == === o oo oo e e e
2.4.2 TCP APIs Other Than SOCKEtS-------============mmmmm
2.4.3 System glue ROULINES - = ===~ === === === o oo e o o o e e oo e e o e
244 Timers and Multitasking----========= === s o oo e e

2.5 Testing
3. TROUBLESHOOTING

USER PROVIDED FUNCTIONS

3.1 General Functions

3.2 Transport Network API Layer

t teplisten()-----mmmm s e e s mm e e e
ftps_conNECtion() --------======== === ==

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

1. OVERVIEW

This technicd referenceis provided with the InterNiche portable FTP server. The
purpose of this document is to provide enough information so that a moderately experienced
"C" programmer with a reasonable understanding of TCP/IP protocols can port the InterNiche
FTP server to anew environment.

It is assumed that one of the InterNiche demo packagesis available as aworking
reference. Demos are currently available for MS-DOS systems; or on Windows 95, where the
demo server runs as a Windows A pplication and uses the native Windows WinSock TCP/IP.
The DOS Demo executable requires a PC running MS-DOS 3.0 or newer and access to
ethernet viaan ODI driver or an FTP Software type “Packet Driver”. Demaos can be provided
on request which support PPP over adiaup link.

1.1 Termsand Conventions

In this document, the term “stack”, when used without other qudification, meansthe
InterNiche TCP/IP and related code as ported to an embedded system. “ System” refersto
your embedded system. “ Sockets’ refersto the TCP AP developed for UNIX at U.C.
Berkdey. A “user” or “porting engineer” usudly refersto the engineer who is porting the server.
An“end user” refersto the person who ultimately ends up using the “user’s’ product. “FCS’ is
an acronym for “First Customer Ship”, the point in the software development cycle when the
product is declared ready to ship. A “packet” is sequence of bytes sent on network hardware,
adso known asa”frame” or a“datagrant’.

Names of files, C structures, and C routines are displayed asfollows ¢_routine()

Samples of source code from C programs are displayed in these boxes:.

/* C source file - the world’s 1 millionth hello program. */
main()

printf(“hello world.\n");

}

1.2 A Note About DOS

We gpologize in advance to those engineers who resent our distribution and
documentation seeming PC-DOS or Intel x86 oriented. The FTP server has been ported to
numerous CPUs and operating systems and has no internal DOS or Intel dependencies.

The DOS orientation is not because our engineers are enamored of DOS or the x86's
technica eegance (they’re not), but smply amatter of market redities. There are more
embedded systems being developed on and for Intel x86 chips than any other, and more
development environments based on DOS and Windows than any other platform. Every client
we' ve had has had at least one PC to unzip the files, read the documentation, and build the

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 4

demo package. And PC based C Compilers and source level debuggers are affordable and
varied.

An additiond argument for usng DOS to develop an embedded systems product isiits
lack of advanced features. We ve yet to encounter an RTOS vendor who asserts their product
has wesker multitasking or memory management features than DOS. By demondtrating that our
products turn in excdlent performance on plain vanilla DOS, we show that the stack has only
minima reguirements from its host system.

1.3 What Doesan FTP Server Do?

FTP gandsfor File Transfer Protocol. It isthe basic mechanism for moving files
between machines over TCP/IP based networks such as the Internet. FTPisa*client/server”
protocol, meaning that one machine, the client, initiates afile transfer by contacting another
meachine, the server and making requests. The server must be operating before the client initiates
his requests. Generadly a client communicates with one server at atime, while most servers
(including the InterNiche server) are designed to work with multiple smultaneous clients.

FTPisformdly defined by the IETF document RFC0959. This software is compliant
with that specification, and the RFC should be consulted for any detailed questions about the
protocoal itself. However abrief overview of the protocol is presented here.

When an FTP client contacts a server, a TCP connection is established between the
two machines. The server does a passive open (a Sockets listen) when it begins operation;
thereafter clients can connect with the server via active opens. This TCP connection persists for
aslong asthe client maintains a sesson with the server, (usudly determined by a human user)
and is used to convey commands from the client to the server, and the server replies back to the
client. This connection is referred to as the FTP command connection

The FTP commands from the client to the server consist of short sets of ASCII
characters, followed by optiona command parameters. For example, the FTP command to
digplay the current working directory is“XPWD”. All commands are terminated by a carriage
return-linefeed sequence (CRLF) (ASCII 10,13; or Ctrl-J, Ctrl-M). The servers replies consst
of a3 digit code (in ASCII) followed by some explanatory text. Generdly codesin the 200s are
success and 500s are failures. See the RFC for a complete guide to reply codes. Most FTP
clients support a verbose mode which will dlow the user to see these codes as commands

progress.

If the FTP command requires the server to move alarge piece of data (like afile), the
server opens a second TCP connection to do this. Thisisreferred to asthe FTP data
connection (as opposed to the aforementioned command connection). The data connection is
opened, usudly by the server back to alistening client, only for trangporting the required data;
and is closed as soon as al the data has been sent.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 5

1.4 What Isa Port?

In the world of portable networking code, the code designer does not know what
tasking system, user gpplications, or interfaces will be supported in the target system. So a
“portable’ stack is one that’ s designed with Smple, generic interfaces in these areas, and a
“glue’ layer is created which maps this generic interface into the specific interfaces available on
the target system. Using the example of sending a packet, the stack would be designed with a
generic send_packet() cal, and the porting engineer would code a“glue” routine to send the
packet on the target system’ s network interface hardware.

Making a stack portable involves minimizing the number of calls which haveto go
across glue routines, and keeping the glue routines smple and therefore easy to implement. The
glue routines aso need to be well documented. The interfaces to the InterNiche FTP server
have evolved through years of porting to avariety of processors, network media, and tasking
systems. Wherever possible we have used standard interfaces (e.g. Sockets, ANSI C library)
or included glue routines to illudtrate their use.

The bulk of the work in porting astack is understanding and implementing these glue
routines. The InterNiche FTP server has three kinds of glue routines: the network API (usudly
Sockets), the user/password lookup, and the file system AFI.

1.5 Requirements

Before beginning a port, the programmer should ensure that the necessary resources are
available in the target environment. Here is a brief summary of servicesthe InterNiche FTP
server needs from the system:

* A timer which ticks at least once a second.

* A nortvoldile read/write method for storing database items (e.g. disk or flash memory)

» Memory as described below.

* A file sygem. This may be a conventiona disk based file system, a flash device which
supports file system like reads and writes, or aram-based “virtud file sysem” likethe onein
the InterNiche WebPort portable Web server.

1.5.1 Memory Requirements

Thereis no easy way to determine the exact memory sizes required, however arough
idea can be obtained by examining the DOS DEMO executables. Some figures for prom/flash
type memory are given below. This program is compiled for the Intel 8088 processor with
Microsoft C 8.0, using default optimization options. It implements an FTP server and TCP/IP
on asingle ODI Ethernet driver. (Note: These figures are subject to change without notice, but
are current as of 1/20/98):

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 6

BYTES | USE
17,084 | satic code
780 | satic data

17,864 | Total static Size, when used as described.

These zes may aso improve dightly when compiled for an Intel 186 or 386 chip. They
generaly worsen when ported to older RISC processors, and improve with some newer
architectures such as ARM.

In addition, dynamic memory is required for each open session on the server. The exact
amount can be varied to favor performance vs. memory usage. The usud recommended range
is 600 to 8300 bytes per session.

1.5.2 Operating System Requirements

The FTP Server aso requires afew basic services from the operating system. These are
listed here:

clock tick - Anunsgned 32 bit counter needsto be availableto FTPwhich is
incremented from 1 to 20 times a second. The incrementing must be regular
and indicated by the value of FTPTPS.

memory access - The FTP server dlocates memory viathe macro FTPSALLOC() which
adways dlocates asingle fixed sze block. This can be mapped directly to
the standard calloc() and free() library cdls or to a“partition” based
system with very little effort.

CPU cycles - Theroutineftps_loop() must be cdled periodicaly. Sysemswhich
support true multitasking can creste atask which cals it whenever FTP
work is pending, and otherwise puts it to deep. It can also be driven by

regular polling.
1.6 Demo Package DirectoriesList

The InterNiche sources are typically distributed with InterNiche TCP/IP asaDOS zip
file TCPIPSRC.zip. Thisfile should be unzipped with pkunzip (or acompetible utility) in
such away asto preserve the underlying directory structure. It includes the required libraries,
mekefiles, and include files needed to implement a Demo package build system. If you do not
use InterNiche TCP, contact InterNiche for a package which includes TCP/IP libraries for your
choice of compiler.

On DOS, the command to unpack the codeis:

c:> pkunzip -d ftpsrc.zip

TAR and gzip versonsare aso available.

Assuming you have unpacked into a directory named \demo, the pkunzip should
cregte the following directories in the\demo directory:

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 7

dosmain - main() routinein filedosmain.c

ftp - the FTP server gpplication, along with sample FTP Client code

inet - |P, UDP and related sources (excluding TCP). Includes startup, interface
and buffer management code

misclib - demo menu system, utility routines, and somefile 1O

Other sub-directories may be present depending on you target system, however these
contain no code required for the FTP Server per-se. Please refer to toolnote.doc for
information about building the sources.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

2. STEPBY STEP PORTING GUIDE

The section describes the steps needed to port the InterNiche FTP Server to anew
environment. The discussions below generaly assume that the stack is being ported to asmal or
embedded system with a sockets AP interface and that aminima ANS! C library isavailable,

The recommended steps to getting the server working on your target system are as
follows

1. Copy the portable source files into your development environment.
2. Create your version of ftpport.h and compile portable sources.

3. Codeyour glue layers (ftpsport.c, etc.) and compile.

4. Build asystem, test, and debug.

2.1 Port Dependent Files

Before beginning step one, you should be aware of which filesin the InterNiche
digtribution are the “ portable” files, and which are not. The portable files are those which should
be compiled and used on any target system without modification. The unportable, or “port
dependent” files, are those which will need to be replaced or modified for different target
systems. Thefird file listed below is the primary FTP Server source file, which should NOT
need to be modified in the course of anormd port. If you fed you need to modify thisfile in the
course of aroutine port, please discuss it with InterNiche stechnica support staff first, so we
can ether suggest an dternative, or modify our sources to reflect the change.

2.2 SourceFileLists

The portable FTP source files. Do Not M odify.

ftpsrv.c
ftpsrv.h

The network (Sockets) glue files, may need modification:
ftpssock.c
The DOS Demo port file for the FTP Server, will need rewriting for other OSes:

ftpsdos.c
ftpsport.h

InterNiche FTP Client files - can be used as is with InterNiche menuing sysem, else
may be replaced or omitted:

ftpcint.c - basc FTP Client code - portable, should not need to be modified.
ftpcprn.c - message printer - may need modification.

ftpmenu.c - menuing InterNiche system extensons for FTP Client user commands.
ftpcint.h - FTP Client definitions - portable, should not need to be modified.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 9

2.3 Master FTP Server Port File: ftpport.h

Before you compile these files you should create a version of thefile ftpport.h. Thisfile
contains most of the port dependent definitions in the stack. CPU architectures (big vs. little
endian), compiler idiosyncrasies, and optiona features (e.g. support for disk drive |etters) are
controlled in thisfile. A single migtake in thisfile (such as getting big and little endian confused)
will guarantee that your port won't work properly. Taking afew hours up front to implement the
fileline by lineistime wdl spent. This section outlines the basc contents of ftpport.h.

2.3.1 Standard Macros and Definitions

The InterNiche FTP Server code expects TRUE, FALSE, and NULL to be defined
within the scope of ftpport.h. The best way to do thisis usudly to include the standard C
library filestdio.h inddeftpport.h. If stdio.h isimpracticd to use or missng, the examples
below will work for dmost every C environment:

#ifndef TRUE

#define TRUE -1
#define FALSE 0
#endif

#ifndef NULL

#define NULL (void*)0;
#endif

2.3.2 Memory Allocation

The FTP Server code dlocates and frees memory blocks dynamicdly asit runs. It uses
the macros listed below to do this. If your target system supports standard C calloc() and
free(), the macros map directly asfollows:

#define FTPSALLOC(size) calloc(1,size) /* get ftp session structure & buffer */
#define FTPSFREE(ptr) free(ptr)

Many RTOS systems do not use calloc() due to performance issues. Generdly, they
use a system which supports dlocations of fixed sze “partitions” (blocks) instead. The macros
above are designed to support this - each of the ALLOC() macros only dlocatesasngle size.
Thus the macros can be mapped to a cdl to alocate the next largest partition size.

2.3.3 CPU Architecture

Four common macros are used from Berkeley UNIX for doing byte order conversions
between different CPU architecture types. These are htons(), htonl(), ntohs(), and ntohly().
They may be either macros or functions. They accept 16 and 32 bit quantities as shown, and
convert them from network format ("big-endian’) to the locd CPU's format.

Most IP stacks dready have these byte ordering macros defined. If thisis the case you
should try to find the exiding include file which defines them and useiit rather than duplicate

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 10

them. The information below is for the rare Stuations where these macros are not dready
avalable.

For Motorola 68000 family and most RISC chips, these can just return the variable
passed, asin this example:

#define htonl(long_var) (long_var)
#define htons(short_var) (short_var)
#define ntohl(long_var) (long_var)
#define ntohs(short_var) (short_var)

The Intel 8086 and its descendants require the byte order in the word or long to be
swapped. Thelswap() and bswap() primitives provided with the InterNiche DEMO package
can be used asillustrated here:

#define htonl(long_var) Iswap(long_var)
#define htons(short_var) bswap(short_var)
#define ntohl(long_var) Iswap(long_var)
#define ntohs(short_var) bswap(short_var)

2.3.4 Debugging Aids

dtrap() isamacro called by the Server code whenever it detects a Situation which
should not be occurring. The intention is for the dtrap routine or macro to try to trap to
whatever debugger may be in use by the programmer. Think of it as an embedded bresk point.
For most Intel x86 processor debuggers, this can be done with an int 3 opcode. The macro
below is effectiveif your Intel C compiler accepts inline assembly:

#define dtrap(); _asm{int3}

Y ou may need to play with the exact syntax to get it to compile. The stack code will
generdly continue executing after adtrap(), but the dtrap()s usudly indicate that something is
wrong with the port. NO PRODUCT BASED ON THIS CODE SHOULD BE SHIPPED
UNTIL THE CAUSESOF ALL CALLSTO dtrap() HAVE BEEN ELIMINATED!
When it comestime to ship code, the dtrap()s can be redefined to anull function to dightly
reduce code size.

The next few primitives have the same function and syntax as printf(). They have
separate names so that they can have their output redirected or be completely disabled
independently of each other. Thefirst, dprintf(), is used throughout the stack code to print
warning messages when something seems to be wrong. This should be mapped to a debugging
console or log during development, and generdly ifdefed away for FCS. Thens_printf() cal
isfor printing datistica information from the FTP client menus functions. These will certainly be
useful during product development, and depending on the nature of the product may be needed
inthe end user’srelease.

In most ports, these can both be mapped to printf() as shown while the product is
under development.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 11

Note: This example works on Microsoft C, but some compilerswill complain about this
gyntax sinceit ignores the fact that these names have parameters. Y ou may have to experiment.

#define ns_printf printf /* same parms as printf, but works at init time */
#define dprintf printf /* same parms as printf, but works during run time */

For some products, it may make sense to define these away before FCS.

#define ns_printf(...) /* define to nothing */
#define dprintf (...) /*define to nothing */

Thelast debugging todl in ftpport.h isthe#define NPDEBUG. Defining thiswill
cause the debug code to be compiled into the build. This code does things like check for vaid
parameters and sensible configurations during runtime. It frequently invokes dtrap() or
dprintf() to inform the programmer of detected potentia problems. Y ou will want make sure it
is defined during development. Unless PROM space istight, it is OK to leave it defined for
FCS - there will be no noticegble performance hit from this code.

#define NPDEBUG 1 [* enable debug checks */

2.3.5 Featuresand Options

The FTP Server has only one configurable feature: whether or not to support adisk
drive letter as part of the current working directory. On systems which let the user distinguish
between different disk devices, such as DOS, thisis usudly desred. Other system such as
UNIX treet dl the available disk devices as part of asingle huge file system space. On these
sysems the feature isirrdevant and would only be confusing.

To endble the support for disk drive letters, include the following linesin your ftpport.h
file

[* set up disk options for DOS */
#define DRIVE_LETTERS 1 [* track drive as well as directory */
#define DEFAULT_DRIVE "c:" [* set default drive */

You can, of course, set your default drive to any letter. The syntax of the drive letter is
the same asfor MS-DOS.

There are ds0 a series of configurable parameters which apply throughout the FTP
Server. These are primarily buffer sizesfor data such as user names and file 1O. For most ports,
the defaults in the demo files as shipped will be a good sarting point for these vaues. If memory
istight, these numbers may be reduced, although at the cost of either performance or
functiondity. These number may aso be increased to accommodate systems with unusualy long
user names, file paths, etc.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 12

These parameters are:/* Implementation defines: */
#define FTPMAXPATH 128 /* maximum path length, excluding file name */

#define FTPMAXFILE 16 /* maximum file name length w/o path */
t#define CMDBUFSIZE 256 /* size of buffer for FTP command */
#define FILEBUFSIZE 8192 /* buffer for file/network 10 */

#define FTPMAXUSERNAME 32 /* maximum length of a user name */
#define FTPMAXUSERPASS 24 /* maximum length of a password */
#define MAXSENDLOOPS 4 /* maximum file buffers to send at once */

2.3.6 Network API

The FTP Server requires a TCP layer on which to run. Theinterfaceto TCP is a subset
of the standard BSD sockets implementation, designed to avoid the most unportabl e sockets
cdls and also to be “map-able’ to non-sockets TCP APIs, such as NCSA Telnet. All TCP
cals made by the FTP code are prepended with the string sys_, so they can be #defined to
the appropriate Sockets (or other TCP) cdlsin ftpport.h. The following definitions work for
InterNiche Sockets. Similar definitions will work for any standard sockets port.

/* map sockets calls to InterNiche Sockets library */

#define SOCKTYPE long * type for socket descriptor */
#define sys_closesocket(sock) t_socketclose(sock)

#define sys_send(sock, buf, len, flags) t_send(sock, buf, len, flags)
#define sys_recv(sock, buf, len, flags) t_recv(sock, buf, len, flags)
#define sys_errno(sock) t_errno(sock)

#define SYS_SOCKETNULL -1L /* socket error */

The semantics of two of the above items vary dightly from the traditiond UNIX
Sockets. sys_errno() isused to get the error value which would be set in the global application
parameter errno on UNIX. Embedded TCP systems generdlly use a per-socket error cal to
perform the errno function since embedded systems often don't have a distinct address space
for every task like UNIX has. The following definition would map sys_errno() to a UNIX-like
Sockets system:

#define sys_errno(sock) errno

The only system error returned from this call which the FTP Server acts upon isthe
EWOULDBLOCK error - thisisrequired, since the FTP Server is coded to run on either
blocking or non-blocking sockets. Thus the vdlue EWOULDBLOCK must be defined in the
scope of ftpport.h, usudly by including the appropriate sockets header file.

2.4 ftpport.c- The“glue’ Layers

Once you' ve developed your ftpport.h file as described in the previous section, the
next step is to code the glue layers. These are the routines which map the generic service
requests FTP makes to specific services your target system provides. Y ou may have aready
handled many of them through #define mgpping in ftpport.h. The rest need to be
implemented as minima layer of C code. In the demo packages most these are collected in the
filesftpsport.c and ftpsdos.c. You can name these files anything you like, or implement these
routinesin asngle port file The two files names reflect ther functions: ftpssock.c contains

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 13

code mapping the FTP server’s generic TCP cdls to the subset of Sockets functions described
in the previous section. The other, ftpsdos.c, implements the FTP server’ s system-specific
functions, primarily making file directories and implementing user/password functionson
DOS.

2.4.1 TCP glueRoutines

The network portion of the glue layers require two ssimple TCP routines - anactive
open, and apassive open, (listen). If you are using Socketsfor a TCP AP, then you can
just recompile the supplied ftpssock.c filewith theftpport.h file you crested in the previous
section - no new sockets coding is required.

2.4.2 TCP APIsOther Than Sockets

If you port to a non-sockets TCP AP, you will need to provide routines which map the
FTP server’s generic TCP connection open functionsto your API. There are two of these
functions: t_tcplisten() andt_tcpopen(). t_tcplisten() implementsapassive open witha
calback to the server when a connection is established. t_tcpopen() implementsan active
open and isusualy used for FTP data connections. These routines are detailed starting on page
20.

2.4.3 System glue Routines

The system glue routines need to be defined for each operating system the FTP Server
is ported to. These implement the details of file sysems and user names which differ from one
system to another. The routines are listed below. Detailed information for them begins on page
23.

fs_dodir(ftpsvr * ftp, u_long ftpcmd) /*do DIR or LS cmd */

Islash(char * path) [* convert slashes in pathname */
fs_dir(ftpsvr * ftp) [* verify directory exists */
fs_permit(ftpsvr * ftp) [* verify user permission for cmd*/

fs_lookupuser(ftpsvr * ftp, char * username) /* lookup user name/password */

244 Timersand Multitasking

Likedl InterNiche applications, the FTP Server is designed to be driven by either
continuous palling (“superloop”) or asatask in an RTOS. In ether case, the routine named
ftp_loop() must be cdled periodicaly whenever thereis pending work for FTP.

Inapalling, or superloop system, (so caled because dl events are driven by polling
fromamain for() loop somewhere) you amply cdl ftp_loop() asoften asyou can - itis
designed not to block for long periods, and will return rgpidly if thereis no outstanding FTP
work. This gpproach is very smple to implement, and alows you to provide FTP services on
syslems with no multitasking cgpabilities. The downsdeisthat it burns CPU cycles even when
thereis no pending FTP work.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 14

In ared multitasking system, the FTP Server can be driven by atask which goesto
deep when thereis no pending FTP work. Pending work isindicated by then receipt of an FTP
command on an FTP command socket, or by the existence of an FTP data socket. Sample
code for thisis provided in reference ports to severd RTOS systems, and is dso available from
I nterNiche upon request.

The find aspect of multitasking isto protect sengtive structures from being corrupted by
code re-entry. Thisis accomplished by two macros which protect critical sections of code:

#define ENTER_CRIT_SECTION(); {_asm{pushf}, _asm{cli}}
#define EXIT_CRIT_SECTION(); _asm{ popf};

The examples given are for the DOS port, where smply disabling interrupts for a brief
period is sufficient. On atrue red-time system, these should be mapped to amutex.

2.5 Testing

Once your ftpport.h fileis set up and your glue layers are coded, compiled, and
linked, you are ready to test your FTP Server. Before you start, you'll need to have avaid user
and password and accessto at least part of the target system’ sfile system.

Perhaps the most common test of our FTP Server isfrom a Windows 95 FTP client.
Just open a DOS box on a connected Windows95 machine, and type “ftp X. X. X. X<CR>"
(X.X.X.X isthe IP address of your target system). Windows 95 will establish a TCP
connectionto the FTP command port (port 21). The FTP client on Windows 95 should then
ask for your user name and password, which you must type in at the keyboard. From there on,
the FTP Server will respond to dl the FTP commands supported by the Windows 95 client.
Most UNIX systems support an FTP client with avery smilar look and fed!.

After basic connectivity is verified, you will probably want to do some speed testing. To
do this, we recommend you use binary mode, and the fastest file device possible. Note that the
Windows 95 FTP client supports separate source and destination file names. We recommend
using this feature to avoid overwriting exigting files. It dso dlows you to copy afile from one
machine to another, then back to the first machine and then do a compare of the two filesto be
sure the content was not corrupted. The Windows command to compare two filesisfc with the
/b option.

Another feature of the FTP Client we recommend using during testing ishash. Enabling
this causes the client to print a stream of hash marks (.. . #######.) 10 the screen asthefile
istransferred. The marks should appear smoothly and continuoudly. If they agppear in bursts,
with pauses in between, this means you are getting less than ided performance. Usudly thisis
the result of packet loss and/or resource problems.

Another test you should runisthe “slowness’ test - forcing your FTP Server code to
block for long periods waiting for disk 10. FTP ports which run well at blinding peeds often fall
thistest. The easiest way to stage this sort of test is usudly to read-and-writefilesto afloppy

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 15

disk. If available, use afloppy on both the client and the server, asthese will cregte different
timing scenarios.

3. TROUBLESHOOTING

In the event the FTP Server port has problems, there are severa troubleshooting
techniques you can use,

The FTP Server, unlike many networking protocols, is quite amenable to source level
debugging with breakpoints. Since the FTP commands are sent from the Windows 95 (or
UNIX) client manudly, it is easy to set a bregkpoint indde ftp_loop()’s case statement and
follow the action. Many problems quickly become obvious this way.

A Packet Andyzer is another invaugble tool for debugging. These are available as
software programs for Windows 95, or as dedicated hardware devices. An andyzer will
capture packets on the LAN to which it is attached, and save them for later review. Most
support filters, so you can set them to capture only the packets of interest - inthis case FTP
packets. Older analyzers may only filter at a coarser level, such asdl IP packets, or dl TCP
packets.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

16

USER PROVIDED FUNCTIONS

The functions described in this section must be provided by the porting programmer as
part of porting the InterNiche FTP. The DOS demo package can be referenced for examples.
If you are using the InterNiche IP stack, al these functions are dready provided.

In the demo packages these functions are either mapped directly to system calsvia
MACROSInftpport.h, or they are implemented in one of the glue layer source files
ftpsport.c and ftpsdos.c

3.1 General Functions

NAME

dtrap()

SYNTAX

void dtrap(void);
DESCRIPTION

This primitive is intended to hook a debugger whenever it is caled.

See the detailed description in the Debugging Aids section starting on page 11.

RETURNS

Usudly nothing, depends on user modifications.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 17

NAME

dprintf()
ns_printf()

SYNTAX

void dprintf(char *, ...);
void ns_printf(char *, ...);

DESCRIPTION

These two routines are functionaly the same as printf. Both are called by the stack
code to inform the programmer or end user of system status. dprintf() prints error warnings
during runtime, and ns_printf() is used by the menu routine to display state information.

See the detailed description in the Debugging Aids section starting on page 11.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

18

NAME

ENTER_CRIT_SECTION()
EXIT_CRIT_SECTION()

SYNTAX

void ENTER_CRIT_SECTION(void);
void EXIT_CRIT_SECTION(void);

PARAMETERS

None

DESCRIPTION

These two primitives should be designed to be paired around sections of code that must
not be interrupted or pre-empted. Generdly these smply need to disable and re-enable
interrupts. On UNIX-like systems they can be mapped to the spl() primitive. On Windows
DLLsthey can be defined to NULL functions since Windows message based system adways
runs to completion. Examples for embedded Intel x86 processors are provided in the demo.
Only the definitions are given here. For examples see the source code.

The stack source code adways pairs these two in the same routines. The implementers
can push avaue on the stack in ENTER and retrieveit in the following EXIT. The Intel x86
example takes advantage of thisto push the existing flags register on the stack, saving the
interrupt flag state, and retrieves the vaue for the flags register later, restoring the interrupt flag
asit was beforethe ENTER cdl.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 19

3.2 Transport Network API Layer

NAME
t_tcplisten()
SYNTAX
SOCKTYPE t_tcplisten(u_short * [port);
PARAMETERS

Local port (Iport) isan unsigned 16 bit TCP port value passed in locd endian. For the FTP
Server thiswill usualy be the FTP command port, 21.

DESCRIPTION

t_tcplisten() will perform a passive open on the port number passed. For FTP the
port number will usually be the stlandard FTP command port: 21. The implementer must so
provide logic to accept incoming connections to the listening port and call
ftps_connection() (pg. 21) each time a connection is accepted.

NOTE: Sincethisroutineis called by the user’ sinitiaization before the FTP Server can
accept connections. See the demo examplein ftpssock.c

See the Network APl section starting on page 13 for more info.
RETURNS

Traditiondly thisreturnsalistening socket, or SYS_SOCKETNULL if error. Since
thisroutineis caled by the user’ sinitidization before the FTP Server sarts, the use of the return
vaueisup to the user.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 20

NAME
ftps_connection()
SYNTAX
int ftps_connection(WP_SOCKTYPE sock);
PARAMETERS

Accepts a Socket descriptor, usudly (but not dways) a 32 bit vaue. This descriptor will be
used later for calsto send and receive on the connection.

DESCRIPTION

ftps_connection() iscaled whenever the TCP layer has accepted a connection on
the FTP Server command connection passive open routine (seet_tcplisten(), pg. 20). The
socket passed will stay open until the FTP Server or the dlient closesit. No further action is
required by the caler.

The socket descriptor passed will be used in later callsto sys_send, sys_recv, €tc.
Thusit should remain vaid in the TCP APl until the socket close routine is caled for this
descriptor.

See the Network API section starting on page 13 for more info.

RETURNS

Returns 0 if OK, -1 if error occurs.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 21

NAME
t_tcpopen()
SYNTAX
WP_SOCKTYPE t_tcpopen(ip_addr host, u_short fport, u_short Iport)
PARAMETERS

ip_addr host [* 32 bit 1P address of host to connect to */
u_short fport /* 16 bit unsigned TCP port number on other host */
u_short Iport * 16 bit unsagned TCP port number on our side */

DESCRIPTION

t_tcpopen() isthe TCP active open routine. Provided so FTP Server can open an
active TCP connection, such as an FTP data connection.

NOTE: All parameters are passed in *loca* endian.

See the Network APl section starting on page 13 for more info.

RETURNS

Returns connected socket if OK, SYS_SOCKETNULL on eror.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

22

3.3 System Interface Functions

NAME

fs dodir()

SYNTAX
Int fs_dodir(ftpsvr * ftp, u_long ftpcmd);
PARAMETERS

ftpsvr * ftp - pointer to an FTP control structure, which contains the socket descriptor to
write the directory text to.

ftpcmd - the 4 |etters of the FTP command encoded into a 32 bit vdue Thiswill
generdly be ether: 0x4c495354 (LIST) or 0x4e4c5354, (NLST). It can
be used as a generd guide for formatting the directory output for the dir or
Is user command.

DESCRIPTION

fs_dodir() iscdled to do adir (or Is for UNIX users) on the current FTP directory,
write the resulting text out to ftps->datasock, a descriptor for a socket which is open before
thisis called. How you do the dir islocd to this function. The data written to the socket should
be plain text, with one filename per line. The FTP client will display the text to the user exactly
asyou format it here.

Lines should be separated by CRLF sequences. See the RFC for formaiting details.
Any temporary files or buffers created in this process should be cleaned up before you return.

RETURNS

Returns 0 if OK, dse-1 if error.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 23

NAME
Islash()

SYNTAX

void Islash(char * path);

PARAMETERS
char * path - C gring with path to convert.

DESCRIPTION

Islash() is needed to format universa (UNIX) dashes /" into local type backdashes'\'.

If the FTP server’ sfile system dready supportsa UNIX likefile system, thisis ano-op - the

code returns without doing anything. On DOS and some other systems, the UNIX like dashes
assumed by most FTP clients must be converted to the loca DOS backdashes. Thisis dways

done in place in the string passed.

The PC-DOS verson of thisis shown here

Islash(char * path)

{

char * cp;

for(cp = path; *cp; cp++)
if*cp==") /* UNIX slash? */
*cp ="\, /*convert to DOS slash */
}
RETURNS

Returns no meaningful vaue.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

24

NAME
fs dir()
SYNTAX
bool fs_dir(ftpsvr * ftp);
PARAMETERS

ftp - pointer to an FTP session structure with the desired path contained in the member
filename.

DESCRIPTION

fs_dir() iscdled to verify drive/directory passed in ftp->filename exigs. The entire
FTP session structure is passed o that the user can write code to hide the existence of, or
prohibit access, to certain directories with certain users.

RETURNS

Returns TRUE if directory isavailable, else FALSE.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

25

NAME
fs_permit()
SYNTAX

bool fs_permit(ftpsvr * ftp);

PARAMETERS

ftpsvr * ftp - pointer to an FTP session structure with the desired path and filename
contained in the member ftp->filename. The user name and password are
aso st in ftp->user.username and ftp->user.password, and the
desired FTP command isin the buffer ftp->cmdbuf.

DESCRIPTION

fs_permit() iscdled by the server to check if the logged in user has permission for a
file operation. The implementer may wish, for example to prevent certain users from deleting
certainfiles, or only dlow “anonymous” usersto read files but not write them.

RETURNS

Returns TRUE if operation isto be dlowed, else FALSE.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 26

NAME
fs lookupuser ()

SYNTAX

Int fs_lookupuser(ftpsvr * ftp, char * username);

PARAMETERS

ftpsvr * ftp - pointer to an FTP sesson structure. If the return vaue is 0 (success)
the strings ftp->user.username, ftp->user.password, and ftp-
>user.home should befilled in.

char * username - C gring with the name passed by the FTP client.

DESCRIPTION

fs_lookupuser() iscdled by the server when an FTP USER command is received.
Thisroutine should lookup the user named in username in the local users database. If the
nameis OK, the routine should fill inthe username, password and home directory in the
user dructurein ftp. If no password required, fill in anull sring. Filled in data should bein an
un-encrypted form. Be sure not to exceed the maximum gring lengths you st in ftpport.h.

The demo package contains a port file for the user database in \misclib\userpass.c.
This example may be helpful when coding for other systems.

RETURNS

Returns 0 if user found, dse-1 if us invdid.

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 27

| ndex

A
active open, 14, 22
ALLOCY(), 10
API: TCP non-sockets, 14
API: network, 13
API: transport network, 20
ARM, 7
assembly, 11

B
b option, 15
backslash, 24
big-endian, 10
blocking sockets, 13
blocks, 10
breakpoints, 16
BSD Sockets, 13
bswap(), 11
buffer: command, 26;
management, 8; sizes, 12
C
caloc(), 7, 10
carriage return, 5
client/server, 5
clock tick, 7
CMDBUFSIZE, 13
command, 15; buffer, 26
command connection, 5
command port 21, 15, 20
connection: command, 5; data, 5
convert: dash, 24
CPU: cycles, 7
CR, 23
CRLF, 5
Ctrl-J,5
Ctrl-M, 5

D

data, 15

data connection, 5, 14, 22

datagram, 4

debugging, 11, 18; hooks, 17;
source level, 16; tool in
ftpport.h, 12

default drive, 12

dialup link, 4

dir, 23

directories: subdirectories listed,
7

disk devices, 12

DLL, 19

DOS: slash, 24

dosmain.c, 8

dprintf(), 11, 12, 18

drive letter, 12

dtrap(), 11, 12, 17

dynamic memory, 7

E
endian, 22; big, 10; local, 20
ENTER, 19
ENTER_CRIT_SECTION(), 19
errno, 13
error, 20; cdl, 13; warnings, 18
Ethernet, 6
EWOULDBLOCK, 13
EXIT, 19
EXIT_CRIT_SECTION(), 19

F

fc, 15

file: includes, 7; name, 26

file name, 25

file path: long name, 12

file system: UNIX, 24

FILEBUFSIZE, 13

flags register, 19

for(), 14

fport, 22

frame, 4

fre(), 7, 10

fs dir(), 25

fs_dodir(), 23

fs_lookupuser(), 27

fs_permit(), 26

ftp, 8, 27

FTP: client, 9; client menus, 11;
command port 21, 15, 20;
data connection, 22; port
number, 20; server, 4; session
structure, 26, 27

ftp_loop(), 14, 16

ftp->cmdbuf, 26

ftp->filename, 25, 26

ftpcint.c, 9

ftpcint.h, 9

ftpemd, 23

ftpcprn.c, 9

FTPMAXFILE, 13

FTPMAXPATH, 13

FTPMAXUSERNAME, 13

FTPMAXUSERPASS, 13

ftpmenu.c, 9

ftpport.c, 13

ftpport.h, 9, 10, 12, 13, 15, 17,
27; debugging toal, 12

ftps_connection(), 20, 21

ftps_loop(), 7

FTPSALLOC(), 7, 10

ftpsdos.c, 9, 13, 14, 17

FTPSFREE(), 10

ftpsport.c, 9, 17

ftpsport.h, 9

ftpsrv.c, 9

ftpsrv.h, 9

ftpssock.c, 9, 13, 20

ftpsvr * ftp, 23

FTPTPS, 7

functions: user provided, 17

G
generic: TCPcdls, 14
glue, 6, 14; network sockets, 9;
routines, 14
gzip, 7
H
hash, 15
hash marks, 15
home, 27
host, 22
htonl(), 10
htons(), 10

|
IETF, 5
includefiles, 7
inet, 8
int3,11
InterNiche Sockets, 13
invalid: user, 27
IP, 8

LF, 23

libraries, 7

linefeed, 5

LIST, 23

listen, 5, 14

listening socket, 20

local endian, 20

local port, 20

long: file paths, 12; user names,
12

Iport, 20, 22

Is, 23

Islash(), 24

Iswap(), 11

M

MACROS, 17

main, 8

main(), 8

makefile, 7

maximum: string length, 27

MAXSENDLOORPS, 13

memory: access, 7; dynamic, 7;
partitions, 10

memory sizes, 6

menu, 8; routine, 18

menuing: commands, 9; sysem,
9

menus, 11

menus functions, 11

message printer, 9

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

28

misclib, 8, 27
Motorola 68000, 11
MSDOS, 12
mutex, 15

N
NCSA Telnet, 13
network: API, 13; transport
API, 20
NLST, 23
non-sockets: TCPAPI, 14
NPDEBUG, 12
ns_printf(), 11, 18
ntohl(), 10
ntohs(), 10

0]
ODI Ethernet, 6
open: active, 22; active/passive,
14; passive connection, 21
P
packet, 4
Packet Analyzer, 16
parameters: configurable, 12
partitions: memory, 10
passive open, 14, 20, 21
password, 27
pkunzip, 7
polling system, 14
port: local, 20
port dependent, 9
port number, 20
port value, 20
portablefiles, 9
print: error warnings, 18
printer: message, 9
printf, 18
printf(), 11
PROM space, 12
R
receive, 21
register: flags, 19
reply codes, 5

requirements, 6

RFC0959, 5

RISC, 7

RTOS, 10, 14

runtime: error warnings, 18

S

send, 21

send_packet(), 6

session structure, 27

dlash: convert, 24

slownesstest, 15

socket: close, 21; descriptor, 21,
23; ligtening, 20

sockets, 6, 9; blocking, 13;
header file, 13; InterNiche
variation, 13

Sockets, 14; BSD, 13; defined, 4;
InterNiche, 13; unportable
cals, 13

SOCKTYPE, 13

source level debugging, 16

speed testing, 15

spl(), 19

startup, 8

stdio.h, 10

string length: maximum, 27

superloop: system, 14

sys , 13

sys_closesocket, 13

sys _errno(), 13

sys recv, 13,21

sys send, 13, 21

SYS SOCKETNULL, 13, 20, 22

system: glue routines, 14; status,
18

T
t errno, 13

t recv, 13

t send, 13
t_socketclose, 13
t_teplisten(), 14, 20, 21
t_tcpopen(), 14, 22

TAR, 7

task, 14

TCP: active open, 14, 22; generic
cdls, 14; non-sockets API,
14; passive open, 14

testing, 15

timing: scenarios, 16

toolnote.doc, 8

transport network: API, 20

U
UDP, 8
UNIX, 4, 13; file system, 24;
FTPclient, 15; slash, 24;
Sockets, InterNiche variation,
13
unpack, 7
user, 27; command, 27;
commands, 9; database, 27;
invalid, 27; modifications, 17,
name, 26, 27; password, 26,
27
user name: long, 12
user provided functions, 17
user.home, 27
user.password, 26, 27
user.username, 26, 27
user/password, 14
username, 27
userpass.c, 27
users database, 27
utility routines, 8
\Y
verbose mode, 5
W
Windows. FTP client, 15
Windows 95, 16
WinSock, 4
A
zipfile, 7

PORTABLE FTP SERVER TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

29

