NICHET ASK

MULTITASKING SCHEDULER
TECHNICAL REFERENCE

interniche <)

technologies, inc.

51 E Campbell Ave
Suite 160
Campbell, CA. 95008

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://mww.iniche.com
support: 408.540.1160

fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We gppreciate any feedback you may have for improvements.
Please send your commentsto support@iniche.com.

The software described in this document is furnished under alicense and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Portions of the InterNiche source code are provided under the copyright of the respective
owners and are aso acknowledged in the appropriate source files:.

Copyright © 1984, 1985, 1986 by the Massachusetts I nstitute of Technology

Copyright © 1982, 1985, 1986 by the Regents of the University of California.

All Rights Reserved
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of CMU
not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

Trademarks

All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of thisinformation. The use of atermin
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

TABLE OF CONTENTS
1. OVERVIEW

11 Source Files
12 task.h Data Types

1.3 Task Stacks
14 TheTask Control Structure

15 General Task Behavior

16 Interruptsand Tasks

2. TK_MACRO DEFINITIONS
2.1 Portable Task Description Structure

2.2 TK_Task Control Definitions

2.3 Tasking System Designs- Spinning vs. Event-blocking
2.4 Priorities

3. THETK M ACROS

TK_NEWTASK () ---=nmmmmmmmmmmmmmmmmmmssemm oo emo oo ccm oo mmmcas
TK_APP_BLOCK () --====mnmnnnnmssmmmmmmmmmsmmmmmmmm s emm oo
TK_APP_WAKE() --===mmmmmmmmmemmm oo s semm oo ec oo scecm oo
TK_SLEEP()--------n=nrsmmmmmmmmmssmmmmmmmmmsssmm oo s eee oo
TK_NETRX_BLOCK () =-----=====ssmmmmmmmmmemmmmmmmmmsemmm oo sccom o oo
TK_CONS _BLOCK () ==-nnnnnnnrssmmmmmmmmmssmmmmmmmmmssemm oo
)= N = = =
TK_THIS() =--mmmmmmmmemmmmmmmmm s s
LIS =
TK_WAKE_EVENT ()---nnnnnnnrsmmmmmmmmmsmmmmmmmmmsssmo oo
01 2=
tK_YIEIOI() === ===
TK_RETURN_ERROR() -------====smmmmmmmsssmmmmmmmnmssmmm oo seeom oo oo
TK_RETURN_OK ()---===nnmnnnnmsssmmmmmmmmmsmmmmmmmmsesmm oo

4. USER TASKING FUNCTIONS

tK_NEW() -

S |
B =

5. Low-LEVEL ROUTINES

tk_gEtSD() - ----mmmmm e

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

O©oowoo~N OO Lo b MDD

=
o

NNNNNRPRREPRRERRRRR
NNRPRPOQOWONOUDNWNLERPR

gwwwwmmmmmmm
WNPFPOOWWONOUIwWw

W W ww
~N O O1 01

1. OVERVIEW

This document describes NicheTask, the InterNiche multitasking scheduler software,
and the interface specifications for it. This multitasking system contains only task control logic -
no semaphores, mailboxes, etc. Tasks are scheduled in a round-robin manner and are not
preempted. Once it gains control, each task runs until it voluntarily blocks. It is up to the
programmer who uses this package to ensure that tasks do not run for indefinite amounts of time
by reinquishing the CPU viacdlsto tk_block() or tk_next(), or one of the blocking TK _
macros described below.

The AP to the InterNiche tasking system is designed so that it can be easily mapped to
amore sophisticated (i.e. red time) system by #defining task calsto the RTOS cdlls. Alll
InterNiche applications which use Multitasking or support a Multitasking version are
implemented using macros which start with the characters TK _, and ports are provided which
show how these macros can be easily mapped to avariety of commercid RTOS systems. The
TK_ macros are defined in the section starting on page 7

This alows projects to begin development on an InterNiche system and “ graduate” to a
RTOS:If it turns out to be required. Code written for the InterNiche system can usualy be
ported by creating the definitions and recompiling. All InterNiche networking code and
goplications are written using the TK__ macros to facilitate such porting.

Tasks can be created and deleted dynamicaly by callsto the tasking API. Each task
has a stack and atask control structure. Tasks are created viathe routine tk_new(), which
returnsis a pointer to this structure. This pointer is thereafter used asatask ID.

The bulk of the tasking system iswritten in portable ANS| C code. Three low-leved
routines need to be provided if you port this system to an unsupported system. Since these
routines are generdly implemented in assembly language, this means you may need to hand edit
these routines if you use an assembler not supported by InterNiche.

1.1 SourceFiles

The entire C verson isimplemented in two C language files. These are:

task.c
task.h

These are generdly found in the InterNiche \misclib directory.
1.2 task.h Data Types

To cdl the tasking package from within a source file, you should include the file
\misclib\task.h which defines the structures and types used in the tasking package. In
InterNiche networking code thisfilesis usualy included in the scope of ipport.h or osport.h.
Thereisatask control structure associated with each task instance, and a defined type task,

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 4

which isasynonym of that structure. Each task structure contains a pointer to the tasks stack
gpace (described below). Thistask structure and its stack area the are alocated as separate
blocksviathe TK_ALLOC() and STK_ALLOC() macros. Generdly these are #defined to
calloc() and free().

1.3 Task Stacks

Each task structure contains a pointer to the task’ s stack. The pointer is a defined type
stack_t, usudly typedef'fed to an integer; thus each task’s stack is an array of integersin
memory. Note that some CPU/compiler combinations use stack space starting with the lowest
address and go up, i.e. apush increments the stack pointer, and other systems start at the
highest address of stack space and move down. The former are referred to as * bottom up”
stacks and the later as*top down”. Y ou will need to indicate one of these options by #defining
ether STK_TOPDOWN or STK_BOTTOMUP.

1.4 TheTask Control Structure

struct task {

stack *tk_fp; /* task's current frame ptr */
char *tk_name; /* the task's name */
int ev_flags; [* flag set if task is scheduled */

struct task *tk_next; /* pointer to next task */
unsigned tk_count; /* number of wakeups */
unsigned *tk_guard; /* pointer to lowest guard word */

unsigned tk_size; [* stack size */
stack tk stack[l]; /*top of task's stack */
I

A pointer to atask control structureis used as a process ID in this system. Task control
gructures form acircular ligt, chained by thetk_next member of the sructure. The scheduler is
around robin scheduler; it smply loops through the circular list of tasks until it finds onewhich is
runnable (that is, atask whose ev_flg is TRUE) and then switchesto that task. A context
switch merdy considts of saving a smal amount of state on the stack and caling the routine
tk_switch() (whichiscdled by tk_block() more about which you'l read later). When the task
later runsagain, it isby that cal to tk_switch() retuning.

When atask stack isdlocated, it isfilled with guardwords - a predefined constant used
to track stack usage. Thetk_guard fidd pointsto the last (lowest on STK_TOPDOWN
systems) word on the stack. On every context switch, thisword is checked to verify that it ill
contains a guardword. If it doesn', the tasking package assumes that the task had a stack
overflow and aborts the system with acdll to the panic() routine. Guardwords are a so used by
the tk_stats() function to determine how much of the stack has been used.

Findly, thereisaglobd varidble, tk_cur, whichis a pointer to the task control structure
of the task which is currently running. For portability, it is recommended that you should only
accesstk_cur viamacros and not read or set its members directly.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 5

1.5 General Task Behavior

New tasks are created in arunnable state, and are not expected to return. Tasks which

have finished their job and wish to saf-destruct should do so by caling tk_exit(). Generdly,
task wakeups should be treated only as hints. When atask runs, it should try to discover why it
was woken up and do the right thing. Thisincdudes being able to cope with aseemingly
reasonless wakeup. Since tasks are forked as runnable, thisis the suggested logic for atask

routine

task_routine(

/* declare local variables; */

/* initialize task resources */

while(1)

{
/* see if there’s work to do */
if(work_to_be_done)
{

/* do ongoing work */

}
tk_vyield();

/* let rest of system run */

Thereisaglobd varigble caled TDEBUG which isnormdly set to FALSE. Whenitis
TRUE, every time atask runs or blocks, a message is printed on the display saying whet it did
and what the task’ s name was. Of course, this makesiit hard to see anything else which might be
going on, but it can be useful to see what task is crashing the program, or what task runs when,

and things of like nature.
1.6 Interruptsand Tasks

Interrupt handlers (ISRs) should never call any of the tasking functions other than

tk_wake(). In genera the only interaction between |SRs and tasks should be the ISR setting or

clearing atask’s “runnable’ flag viatk_wake().

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

2. TK_MACRO DEFINITIONS

If atask using gpplication will potentialy be ported to other multitasking systems, then it
isobvioudy desirable to not to tie its design or source code directly to NicheTask’s (or any
other’s) multitasking API. All InterNiche network applications are written using a set of macros
which can be mapped to virtualy any OS or RTOS. The macros, referred to for obvious
reasons as the TK__ macros, are described in this section.

Many of the TK__ macraos map directly to NicheTask cals aswell as cadls from many
other popular embedded RTOS packages. Implementations are available from InterNiche upon
request. Contact your InterNiche distributor for an up to date list of supported RTOS systems.

In InterNiche' s networking code, the TK _ macros are generdly defined in afile named
osport.h. Prgjects which support multiple RTOS will have either multiple ogport.h files
available, or asingleosport.h filewith #ifdefs for the different systems. Thisosport.h file
should beincluded in any file which usesthe TK_ macros. In InterNiche gpplications thisis
usudly done by induding osport.h inipport.h; which is ultimately incdluded in nearly dl
InterNiche sourcefiles.

There are two classes of TK_ macros - those which map to a procedure call and those
which are used to declare an object. The object declarations are used so that task structures,
Ids, and entry points can be declared in a generic way and will not need to be redefined in the
source code when recompiling with anew RTOS. The object declarations are listed here, dong
with their definition for NicheTask:

#define TK_ENTRY(name) int name(int parm) [* function declaration */
#define TK_ENTRY_PTR(name) int(*name)(int) /* pointer to function */
#define TK_OBJECT(name) task * name [* task object */
#define TK_OBJECT_PTR(name) task ** name [* pointer to object */
#define TK_OBJECT_REF TK_OBJECT

- or -
#define TL_OBJECT_REF TK_OBJECT_PTR

Severd InterNiche project directories use these macros to share asingle “main” Cfiles
across severd operating systems. Thisfile, named netmain.c, declares an array of structures,
each of which contains the required parameters to create one of the tasks needed in an
embedded networking sysem. The netmain.c files aso containsanetmain() routine invoked
by system at startup. It usesafor loop to create atask for each entry defined in the array, it
then calls XXXXX() in XXXXX.c to creste any application server tasks that have been
enabled through ipport.h. Theindividual task objects and task information structures are
defined in the application directories. The keyboard i/0 task in tk_misc.c provides an example
of how this can be done. Since netmain.c iswritten using the TK_ macros, it can be compiled
and used with multiple operating systems.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 7

2.1 Portable Task Description Structure

The structure for the table with an entry for each Internet task/thread is named
inet_taskinfo. Itisdefinedin osport.h, even though it is generdly identica from port to port.
This dlows the porting engineer to add fidlds if needed. Since the Sructure array isinitidized in
netmain.c it should sart with the same vaues in the same order in dl ports.

The default for thisis

struct inet_taskinfo {
TK_OBJECT_PTR(tk_ptr) [* pointer to static task object */

char * name; /* name of task */
TK_ENTRY_PTR(entry); /* pointer to code to start task at */
int priority; [* priority of task */

int stacksize; [* size (bytes) of task's stack */

I}

All the members of this structure are declared with standard “ C” types or TK__ macros
for portability. Not dl fields are used on dl tasking systems, for example the priority fidd isnot
used on round robin schedulers like NicheTask. Even in these cases, the unused fields should be
left in place for portability.

2.2 TK_Task Control Definitions

The TK_ macros which map to procedure cdls fdl into two sub-classes - those which
create & delete tasks, and those which transfer program control. In tasking systems which do
not support dynamic task creation and deletion, the create macros may Smply finish
congtruction of task management objects or mark atask as runnable - they don't necessarily
have to do the actud creation. The InterNiche networking software, including netmain.c, does
not delete tasks, so the delete macros may be smply #defined away.

The procedura TK_ macros are listed here and described in detal in the next section.
Thisexample isfor the NicheTask system. Some aspects of these definitions are explained
below.

int TK_NEWTASK(struct inet_taskinfo * nettask);

[* define TK_ macros to NichTask: */

#define TK_APP_BLOCK(event) tk_ev_block(event)

#define TK_APP_WAKE(event) tk_ev_wake(event)

#define TK_SLEEP(ticks) tk_sleep(ticks)

#define TK_NETRX_BLOCK() tk_ev_block(&rcvdq)

#define TK_CONS_BLOCK() tk_next()

#define TK_YIELD() { tk_wake(tk_cur); tk_block(); }

#define TK_WAKE() tk_wake()

#define TK_RETURN_ERROR() return (-1) [* task error return */
#define TK_RETURN_OK() parm++; return (0) /* task OK return */

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 8

Inthis case, TK_NEWTASK() isafunction declaration and not amacro. Thisis
primarily ametter of style - it could be done either way. Since thisis only cdled afew times,
and only a system initidization time, the readability and smdler code Sze of aroutine was
chosen in this port over the faster execution time of a macro.

Another bit of code worth explaining isthe“parn++;” in TK_RETURN_OK. To
understand this, review the example definition of TK_ENTRY/(). It defines aroutine with a
single passed parameter of typeint. Sincethe TK_ENTRY macro isused innetmain.c to
define task’ s entry points and the parameter is not used, asmple return(0) statement would
result in many C compilers generating awarning about an unused parameter. The netmain.c
tasks do not actudly use the parameter Since not al multitasking systems support a parameter.
By performing an increment operation on the parameter in the return macro, the compiler
warning is avoided.

2.3 Tasking System Designs - Spinning vs. Event-blocking

Before describing the TK_ macrosin detall, it isworth explaining the underlying
assumptions about how they will be used. The main design god of these macrosis to support
InterNiche networking code on awide variety of systems without any code modifications other
than the macro implementations themsaves. Aswith any such system there are some smplicity
vs. performance trade-offs which warrant explaining.

The smplest task modd used by the InterNiche networking code is one where each
task remains dways ready to run. The tasks run for a reasonable period of time (as determined
by the porting programmer) or, more often, until there is no more work to be done. The task
then blocks, giving other tasks the opportunity to run in round-robin fashion. Each task hasa
chanceto run in the same fashion.

The advantage of this approach is smplicity - there are no decisions to be made about
how and when to suspend or wake up tasks. Each task essentidly makes the decision for itsdlf,
blocking briefly when there is no work and running when there is. The disadvantage isthe
inefficiency of waking every task on every pass through the scheduler. Thisinefficiency isnot as
bad as it sounds. The InterNiche networking tasks are written to quickly determineif they
should run or not, and return immediatdy if not. The C code when wdl optimized on aRISC
processor can do the call-test-return sequencein aslittle as three CPU ingructions. This means
that this“infinite pinning” system is an excdlent choice for most gpplications.

Some systems, however, require that the tasks not be runnable when there is no work
to be done. One potentia reason for thisis a battery powered device which wishesto be able
to shut down the CPU to save power, and only does so when al tasks are suspended. The
InterNiche networking code and the TK_ macros can work on such event based blocking
gysemsif the underlying tasking package is capable of supporting tasks which block pending an
event. NicheTask has this capability. Even RTOS packages which don't directly support
blocking on an event can often be supported by creating additiond layers of code to do this.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 9

The basic philosophy of InterNiche networking tasks is that each task services aqueue
or linked list of structures, where each list item represents some aspect of the network activity
which may shortly require CPU cycles. The most common examples of these items are TCP
connections with received data in the socket structures, and network packets received from
hardware devices. When no such circumstance is pending, al tasks suspend themsalves with the
TK_APP_BLOCK() or the TK_NETRX_BLOCK() macros, and the system can be powered
down until incoming network traffic (or a user command) wakes it up. In these cases the two
_BLOCK macros are expected to both be mapped to the same tasking system blocking call -
tk_ev_sleep() inthe case of NicheTask.

2.4 Priorities

In tasking environments which support multiple priorities, the best philosophy isto
cregte dl the network tasks at the same priority level and let them run round-robin style. Setting
them to different priorities creates the potentid for ahigh priority task that ends up with alarge
amount of input to lock out lower priority tasks and thus hurt system performance. Any
application needs the gpplication’ s task, the network task, the timer task, and the interrupt
system to dl get reasonable amounts of CPU time or the overall performance of the gpplication
will suffer.

It isaso usudly not required to run the network tasks at a high priority in a prioritized
system. The TCP/IP Networking protocols and their applications are designed to alow for
wide variancesin event timing. Any event (such as areceived packet) which is ddayed or
dropped will be handled by the protocals. It is generdly fine to save the high priority tasks for
whatever applications make up the systems primary function, and let the network catch up in the

systems spare cycles.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 10

3. THETK MACROS

This section contains detailed descriptions of the TK__ macros. The syntax illudtrated in
the synopsis section assumed the macro is trested like afunction.

NAME
TK_NEWTASK ()

SYNTAX

int TK_NEWTASK(struct inet_taskinfo * nettask);

DESCRIPTION

TK_NEWTASK() iscdled to creste the actua task entity. This may include alocating a
task structure, a stack, or other resources for the task, and setting it up to run. Notethat in
some tasking systems the task structures and stack memory are statically declared via
TK_OBJECT() and only need to be activated, while in others such as NicheTask the tasks are
dlocated from heap. In thislater case, the task’ s identifier is an unassigned pointer to the task
whichisfilledinby TK_NEWTASK() beforeit returns.

The passed pointer isto an inet_taskinfo structure (described in the pervious section)
which containsinformation used to set up the task. Not al the information in this Sructure is
used by every port.

Tasks should be created ready to run, and may be started by the system at any time
after creation. Tasks should be coded to test for any required resources or conditions as they
dart executing. An example of thisisthe netmain.c gpplication tasks, which test the globa
varidble NET_READY before commencing network 10.

RETURNS

TK_NEWTASK should return a zero if the task was successfully created, and a
negetive one (-1) if not. Specific error codes or task 1ds which need to be returned can be
saved in port-specific fields added to the end of the passed structure.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 11

NAME
TK_APP_BLOCK()

SYNTAX

void TK_APP_BLOCK(void * event)

DESCRIPTION

Thismacro is caled by an gpplication when it has no more immediate work to do. The
passed event parameter is a pointer to a data object which may optionally be used to wake
the task when some event requiring the tasks attention occurs.

The porting engineer needs to decide before implementing this macro if the tasking
system will adhere to one of the tasking models described in the section, Tasking System
Dedigns - Spinning vs Event-blocking on page 9, or do something else entirely.

Ina“spinning” task system design, this macro may opt to ignore the passed flag and
samply rdinquish the CPU to other tasks. In systems where different tasks have different
priorities, care should be taken to ensure that lower priority tasks get an opportunity to run. This
could mean actudly putting the task to deep for a brief interva.

In event based blocking systems this macro should record the passed pointer and block
the cdling task until acdl ismadeto TK_APP_WAKE() with the same event pointer.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 12

NAME

TK_APP_WAKE()

SYNTAX

void TK_APP_WAKE(void * event)

DESCRIPTION

Thisis cdled to awaken atask which has been blocked by a previous event blocking
cdl, suchas TK_APP_BLOCK() or TK_NETRX_BLOCK(). Cdling thisisonly required on
systems which use event blocking. Systems which use the infinitely spinning gpproach do not
grictly need to cdl this, dthough it isagood ideafor portability reasons.

The address passed should be the same address that was passed to the_BLOCK cal.
All tasks which have block on this address are set as runnable. On Some RTOS sysems a
higher priority task which is adegp on the event passed to TK_APP_WAKE() may run before
TK_APP_WAKE() returns, so code should be designed to alow this.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 13

NAME

TK_SLEEP()

SYNTAX

void TK_SLEEP(long ticks)

DESCRIPTION

Cdling this causes the calling task to suspend for the specified number of system clock
tick. On InterNiche networking systems clocks ticks are tracked by the variable cticks, and the
frequency is defined by TPS (ticks per second).

Tasks put to deep with this call may be avakened before the indicated time by acal to
TK_WAKE(). They are not awakened by callsto TK_APP_WAKE().

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 14

NAME

TK_NETRX_BLOCK()

SYNTAX

void TK_NETRX_BLOCK(void * event)

DESCRIPTION

Thecdl issemanticdly identicd to TK_APP_BLOCK(). It isonly caled from the
InterNiche TCP/IP stack’ s received packet handling task and should not be used by any other
code.

It is a separate macro because on some systems the recelved packet handler may be
implemented as a specid case, getting a higher priority or faster wake-ups than the gpplications
whichcal TK_APP_BLOCK(). On systems with polled network devices (for example ring-
buffer Ethernet chips) thisroutine is a good place to do the device palling.

The event for this call is dways the address of the received packet queue (rcvdq).

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 15

NAME

TK_CONS BLOCK ()

SYNTAX

void TK_CONS_BLOCK(void)
DESCRIPTION

Thisis another specid-case blocking routine. In this case, it blocks waiting for character
input from the system console. When a character is ready to read, it should return. The cdling
code should dtill verify that a character is ready before cdling getch() (or whatever console
ready mechanism it uses) to avoid blocking ingde the getch() function.

Blocking inside a Keyboard Reading routineis one of the most common mistakesin
implementing embedded multitasking packages.

On systems where the console input is marked by asynchronous events (e.g. interrupts),
this macro may be mapped to an event blocking routine. Other systems may need to poll a
keyboard flag or buffer Sate to determine when it istime to return to the caling task.

In generd aswith TK_NETRX_BLOCK(), this routine should not be called by tasks
other than the one it istailored to, in this case the InterNiche port console handler.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 16

NAME

TK_OBJECT_REF
SYNTAX

#define TK_OBJECT_REF TK_OBJECT

OR

#define TK_OBJECT REF TK_OBJECT_PTR

DESCRIPTION

Thisisamarco which is an indirection to ether the TK_OBJECT or
TK_OBJECT_PTR macro’'sthat are used to declare an object. TK_OBJECT_REF declares
the task identifiesin the tk_wait_event structure which is used to implement averson of
tcp_deep() and tcp_wakeup(), which is portable across all RTOSs. Some RTOSs like PSOS
identify tasks with along, or with an integer like in the case of uC-OS, however some other
RTOSs like ThreadX identify tasks with a pointer to a structure.

Hence this macro needs to setup to be either aTK_OBJECT or TK_OBJECT PTR
whichever isthe principd identifying method for the target RTOS.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 17

NAME
TK_THIS)
SYNTAX

TK_OBJECT_REF TK_THIS (void)

DESCRIPTION

Thiscdl isused in thetcp deep() and tcp_wakeup() implementation which is portable
acrossvarious RTOS es. TK_THIS() is expected to identify atask in terms of the
TK_OBJECT_REF which isageneric identifier for the task as described earlier. On some
RTOS es this macro maps directly while some others might need awrapper around the call.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 18

NAME

TK_WAKE()

SYNTAX

void TK_WAKE(TK_OBJECT_PTR Id)

DESCRIPTION

Thisis cdled to awaken atask which has been blocked by a previous event blocking
cdl, suchas TK_BLOCK() or TK_NETRX_BLOCK(). Cdling thisisonly required on
systems which use event blocking. Systems which use the infinitely spinning gpproach do not
grictly need to cal this, dthough it is agood idea for portability reasons.

The address passed should be the same address that was passed to the_BLOCK call.
All tasks which have block on this address are set as runnable. On Some RTOS sysems a
higher priority task which is adeegp on the event passed to TK_WAKE() may run before
TK_WAKE() returns, so code should be designed to dlow this.

Note that this cals strictly expects a pointer to atask object as its argument.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 19

NAME
TK_WAKE_EVENT ()

SYNTAX

void TK_WAKE_EVENT(TK_OBJECT_REF event)

DESCRIPTION

Thisis cdled to awvaken atask which has been blocked by a previous event blocking
cdl, suchas TK_BLOCK() or TK_NETRX_BLOCK(). Cdling thisisonly required on
systems which use event blocking. Systems which use the infinitely spinning approach do not
grictly need to cal this, dthough it is agood idea for portability reasons.

The object reference passed should be the same object reference that was passed to
the_BLOCK cdl. All tasks which have block on this object reference are set asrunnable. On
Some RTOS systems a higher priority task which is adeegp on the event passed to
TK_WAKE_EVENT () may run before TK_WAKE_EVENT () returns, so code should be
designed to dlow this.

Note that this cal strictly expect the argument to be of type TK_OBJECT REF (which
isagain anindirection to TK_OBJECT or TK_OBJECT PTR depending on the target RTOS).

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 20

NAME

TK_YIELD()
tk_yield()

SYNTAX

void TK_YIELD(void)

DESCRIPTION

TK_YIELD() iscaled when the task code wants to wait for something to occur - a
gtuation often referred to as a“busy wait”. The TK_YIELD() primitive must give other tasksa
chanceto run, yet resume the caling task in ashort interva. On around-robin system like
NicheTask thisiseasy - you Smply mark to current task as runnable an cdl the round-robin
scheduled.

On an RTOS where tasks have priorities, this can be somewhat trickier to implement.
These systems sometimes support a call which will let tasks of equa or grester priority run, by
not lower priority tasks. A task spinning on such aTK_YIELD() macro would never alow a
lower priority task to run.

One remedy for thisisto code the TK_YIELD() macro to put the task to deep for a
sngle dlock tick. Thiswill force it to wait areasonable interva during which lower priority tasks
may potentialy get some cycles. The draw back is that even when the system has nothing else
to do, the task spinning on will never be able to utilize dl the CPUs power - it will dways spend
acertain amount of time gratuitousy blocked.

Thetk_yield()macro (same namein lower case) isidentical to the uppercase verson. It
is supported for historical reasons.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 21

NAME

TK_RETURN_ERROR()
TK_RETURN_OK()

SYNTAX

void TK_RETURN_ERROR(void);
void TK_RETURN_OK(void);

DESCRIPTION

These macros are used in place of areturn statement in task routines declared with
TK_ENTRY/(). In most tasking systems atask should never return, however thereturn
statement is often required to avoid compiler warnings. Both error and non error varieties are
provided for completeness.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

4, USER TASKING FUNCTIONS

Descriptions of functions in the tasking system follow.
NAME

tk_new()

SYNTAX

task *tk_new(task *prev_task,
int (*entry_point)(),
unsigned stack_size,
char *name,
unsigned arg);

DESCRIPTION

This cal creates a new task, setting up atask control structure and a stack for it. It
insartsit in the linked list of tasks directly after the task pecified by prev_task. entry _point
isthe pointer to the routine which implements thistask. arg is the argument passed to
entry_point.

tk_new() builds astack frame for this function by caling the lower level function
tk_frame(), so that the first time the task runsit can utilize its stack. It can store its Sate on the
gack, have local varigbles, and in generd, do mogt things that any normally called C routine
could do, except that it must never return.

Thestack_size parameter indicates the number of bytes of stack which tk_new()
should dlocate. This stack is used by the taskslocd variables, by functions called by the task,
and astheinterrupt stack for any interrupts which occur while that task is running. 800 to 1000
bytes seem to be good minimum sizes.

Thisisan example of entry_point for atask which will print amessage and then loop
forever, printing further messages. Tasks are set to runnable when crested, so it does not need
to be awakened after it is created with tk_new().

taskl_entry point()
{
printf("Hello world. \n");
printf(“taskl: starting up. \n");
while(1)
{
printf(“... still running...”);
tk_yield()
}
}

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 23

It is generdly good form to enclose the main body of the task in awhile or for loop.
Although tasks should never return, some compilers may aso require areturn statement at the
end of the function to suppress compiler warnings. Ironicaly, other compilers will warn that the
return statement, if present, is unreachable. The InterNiche TK_ macros define TK_RETURN

macros, S0 these compiler dependencies can be dedlt with in asngleindude file rather thanin
every task’s source.

Findly, thename parameter is a string which has atextua name for thetask and is
sometimes useful for debugging.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 24

NAME
tk_init()
SYNTAX
task *tk_init(unsigned stack_size);
DESCRIPTION

Thisroutine initidizes the tasking system. It builds atask control structure for the
"currently running” task, givesit aname, main, and leaves it running on the system stack. It is
important to redlize that the stack in use when tk_init() is called becomes the stack of the
created task - the task named main - and thus should not be returned to heap or otherwise
used later for any other purpose.

The purpose of this stack reuse feature is to conserve space on low-memory systems.
The compiler and/or bootstrap code often alocate a reasonably good sized stack, and thereis
usudly no reason why this stack cannot be used by atask during runtime. In cases where the
boot-up stack is not gppropriate for task use, the OS port code should ingtal a stack which is
suitable prior to cdling tk_init().

The stack_size parameter should be the number of bytes available on the stlack when
tk_init() iscaled. Thisfunction should be caled before any other routine in the tasking system

RETURNS

If successful, it returns a pointer to the task control structure that it built. If it fails (for
exampleit cannot dlocate the task structure) it returns NULL.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 25

NAME
tk_ev_block()

SYNTAX

void tk_ev_block(void * event);

DESCRIPTION

The routine causes the caling task to suspend until another task callstk_ev_wake()
with anidenticd event vadue Theevent vaueisusudly a pointer to abuffer or sructure
which is controlled by the cdling task. The task’ swake flagis cleared, and any previous event
the task was deeping on is cleared.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 26

NAME
tk_ev_wake()
SYNTAX
void tk_ev_wake(void * event);

DESCRIPTION

This routine wakes any tasks which have been blocked by apreviouscal
tk_ev_block() with the same event vaue. All tasks blocked on the event are awakened. The
event is cleared in the awakened task’ s structure, so future callsto tk_ev_wake() will NOT
awaken the task again unless they have made another call totk_ev_block().

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

27

NAME
tk_block()

SYNTAX

void tk_block(void);
DESCRIPTION

tk_block() takes no arguments and returns no vaue. It blocks the currently running
task. Since the tasking system is non-preemptive, thisisthe only way for another task to gain
control of the processor. Other tasking system entry points which swap tasks do this by first
setting awake condition and then calling tk_block(). Thisroutine returns the next time the task
which blocked runs.

tk_block() containsthe heart of the scheduler. It basicaly runs through the circular list
of tasks until it finds a runnable task and then does a context switch to that task, which then sees
itslast call to tk_block() return. tk_block() calstk_switch() to perform the actual context
switch

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 28

NAME
tk_exit()
SYNTAX
void tk_exit(void);
DESCRIPTION

This function causes the current task to die. When another task becomes runnable, this
task's task control structure and stack will be dedllocated. This routine should not be called
from interrupt level and no further references should be made to this task's task control structure
after thiscdl ismade.

tk_exit() never returns.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 29

NAME
tk_wake()

SYNTAX

void tk_wake(task * tk);
DESCRIPTION

Thisroutine isameacro or higher leve routine implemented on tk_block(). It merely
setsthetasks event flag in the task control structure to which tk pointsto indicate that the
task should run. The next time the scheduler runs, this task will be consdered runnable.

This routine can be cdled from interrupt handlers, and isthe preferred mechanism by
which an ISR should initiate system processing. An example of a usage of thisroutineisby a
meac driver interrupt handler, which, when a good packet is received, enqueues the packet on
the received packet queue and wakes the task which handles received packets.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

NAME
tk_next()

SYNTAX

void tk_next(void);
DESCRIPTION

tk_next() performsatk_wake(tk_cur) and atk_block(). It essentidly yieds the
processor to let other tasks run, but wakes up the current task before yielding so thet it regains
control of the processor after an unspecified amount of time.

Functiondly identica to tk_yield(), except thet it is dways defined as aroutine (not a
macro) for portability reasons. The TK_ macro TK_YIELD() may beimplemented on
NicheTask by #defining it to tk_next(), or defined as amacro which directly cdlsthe
tk_wake() and tk_block() functions.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 31

NAME
tk_Kkill()
SYNTAX
void tk_Kkill(task * tk);
DESCRIPTION

Thisfunction killsatask. The task isimmediately removed from the ligt of tasks and its
stack is dedllocated. Tasks should not cal tk_kill with their own task pointer, they should use
tk_exit() instead.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 32

NAME

tk_sleep()
SYNTAX

void tk_sleep(unsigned long ticks);

DESCRIPTION

This function puts a task to deep for the specified intervd, given by the number of clock
ticks passed. The number of these ticks per second is given by the constant TPS, so if you
want to suspend atask for three seconds you could code the tick parameter as (3* TPS). The
code which determines the exact duration that the task will deep has an accuracy of +/- one (1)
tick. Of course since the system is on-preemptive, another task “hogging” the CPU could cause
the task to deep indefinitdly.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 33

NAME
tk_stats()
SYNTAX
int tk_stats(void *io_dev);
DESCRIPTION

This macro prints statistics about al tasksin the ligt. It prints the name of each task, the
dlocated stack size and the number of bytes of stack which have actualy been used by the task.
Theio_dev parameter is a system dependent descriptor for an output device to use, usudly an
InterNiche “generic’ 10 device asimplemented in \misclib\in_util.h. If theio_dev pointer is
NULL, the system should print the statistics to the default output device (if any).

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential A

5. LOW-LEVEL ROUTINES

The following functions are internd to the tasking system only and should not be caled
from outside of it. These routines are generally not portable across processors (or sometimes
even assemblers), and as such need to be implemented for each target system. These are usualy
written in machine (assembly) language.

NAME
tk_frame()
SYNTAX
tk_frame(task *tk, int (*entry)(), int arg);
DESCRIPTION

Thisroutine builds the actud stack frame for atask. It builds the frame for the task
whose control structure is pointed to by tk. entry isthe entry point of the task. arg isthe vdue
passed to the routine when it runs for the first time. The task is not set to runnable by
tk_frame(); thismust be done by the caler if desired.

Thisiscdled by tk_new().

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 35

NAME
tk_switch()
SYNTAX
tk_switch(task *tk);
DESCRIPTION

This routine performs the actua context switch to the task whose control block is
pointed to by tk. When the current task runs again, the call that was made to tk_switch() will
return

Thisiscdled fromingdetk_block().

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

36

NAME

tk_getsp()
SYNTAX

stack_t * tk_getsp(void);
DESCRIPTION

This returns the current stack pointer. It should just place the current stack pointer into a
return register as expected by the C compiler. The vaue of the system’s stack may change
when this cdl returns, but the calling code dlows for this.

Thisiscdled from tk_init() to find the main task’ s stack.

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 37

| ndex

A
arg, 23, 35
assembly language, 4, 35
asynchronous events, 16
B
BLOCK, 13, 19, 20
BLOCK macros, 10
bottom up stacks, 5
busy wait, 21
C
caloc(), 5
classes. TK__macros, 7
clock ticks, 33
compiler: warnings, 22
console input, 16
context switch, 28, 36
control structure: task, 25
create: tasks, 8
creation: task, 8
cticks, 14

D
deallocate, 29, 32
debugging, 24
delete: tasks, 8
deletion: task, 8

E
embedded: RTOS, 7
embedded networking, 7
entry, 35
entry points: define, 9
entry_point, 23
Ethernet: ring-buffer, 15
ev_flg,5
event, 12, 26
event flag, 30

F
for loop, 7, 24
free(), 5
function: declaration, 9
functions, 23; internal, 35

G
getch(), 16
global variable, 5
guardwords, 5

H
handler: received packet, 15

|
in_util.h, 34
increment operation, 9
inet_taskinfo, 8
infinite spinning, 9
initialize, 25
internal functions, 35
interrupt handlers, 6, 30

interrupts, 16
io_dev, 34
ipport.h, 4, 7
ISR, 6,30

K
kill task, 32

L
low-memory systems, 25

M
meac driver, 30
macros: procedurd, 8; TK, 4
main, 7, 25; task, 37
misclib, 4

N
name, 24
NET_READY, 11
netmain(), 7
netmain.c, 7, 8, 9, 11
NicheTask, 4
non-preemptive, 28

o
osport.h, 4,7, 8
overflow: stack, 5

P
packet handler, 15
panic(), 5
portability, 8, 31
preemptive, 33
prev_task, 23
print: message, 23; statistics, 34
priorities, 10, 21
priority: field, 8
procedural: macros, 8
procedure calls, 8
processiD, 5
program control, 8
push, 5

R
rcvdg, 15
real time system, 4
reasonless wakeup, 6
received packet handler, 15
return: statement, 22
return(0), 9
ring-buffer Ethernet, 15
RISC, 9
round robin, 5
RTOS, 4,9, 13,19, 20, 21

S
semaphores, 4
stack: reuse, 25
stack frame, 35
stack overflow, 5
stack_size, 23, 25

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

stack_t, 5

statistics: print, 34
STK_ALLOC(), 5
STK_BOTTOMUP, 5
STK_TOPDOWN, 5
suggested logic, 6

suspend, 26

swap tasks, 28

system: tasking, 25; timer, 25
system stack, 25

T

task, 4; control structure, 25;
creation, 8; deletion, 8; kill,
32; swap, 28

task ID, 4

task.c, 4

task.h, 4

tasking system, 25

TDEBUG, 6

ticks, 33

timer system, 25

TK_macro: classes, 7

TK_macros, 4, 7

TK_WAKE, 19

TK_ALLOC(), 5

TK_APP_BLOCK(), 10, 12, 13,
15, 19, 20

TK_APP_WAKE(), 12, 13, 14

tk_block(), 4, 5, 28, 30, 31, 36

TK_CONS BLOCK(), 16

tk_cur, 5, 31

TK_ENTRY(), 9, 22

tk_ev_block(), 26, 27

tk_ev_sleep(), 10

tk_ev_wake(), 26, 27

tk_exit(), 6, 29, 32

tk_frame(), 23, 35

tk_getsp(), 37

tk_guard, 5

tk_init(), 25, 37

tk_kill(), 32

TK_NETRX_BLOCK(), 10, 13,
15, 16, 19, 20

tk_new(), 4, 23,35

TK_NEWTASK(), 9, 11

tk_next, 5

tk_next(), 4, 31

TK_OBJECT(), 11

TK_OBJECT_REF, 17

TK_RETURN_OK, 9

tk_sleep(), 33

TK_SLEEP(), 14

tk_stats(), 5, 34

tk_switch(), 5, 28, 36

TK_THIS, 18

tk_wake(), 6, 30, 31

TK_WAKE(), 14
TK_WAKE_EVENT, 20
TK_YIELD, 21
tk_yield(), 21
TK_YIELD(), 21

tk_yield(),, 31
top down stacks, 5
TPS, 14, 33

\Y
variable: global, 5

NICHETASK TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

W
wake: flag, 26
whileloop, 24

39

