

NICHEFILE

VIRTUAL FILE SYSTEM (VFS)
TECHNICAL REFERENCE

51 E Campbell Ave
Suite 160

Campbell, CA. 95008

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 2

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://www.iniche.com
support: 408.540.1160
fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We appreciate any feedback you may have for improvements.
Please send your comments to support@iniche.com.

The software described in this document is furnished under a license and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Trademarks
All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of this information. The use of a term in
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 3

Table of Contents

1. OVERVIEW OF API PROVIDED BY THE VFS __________________________________5
1.1 VFS Implementation ___5
1.2 Source Files that Constitute the VFS ________________________________6

1.2.1 vfsfiles.h __6
1.2.2 vfsport.h__6
1.2.3 vfsfiles.c __6
1.2.4 vfsutil.c ___6
1.2.5 vfssync.c__6
1.2.6 makefile __6

1.3 VFS Configuration Options __7
1.3.1 VFS_FILES ___7
1.3.2 HT_RWVFS __7
1.3.3 VFS_AUTO_SYNC __7
1.3.4 HT_EXTDEV__8
1.3.5 HT_LOCALFS __8
1.3.6 FILENAMEMAX __8
1.3.7 VFS_MAX_TOTAL_RW_SPACE_________________________________8
1.3.8 VFS_MAX_DYNA_FILES_______________________________________8
1.3.9 VFS_MAX_OPEN_FILES _______________________________________9

2. DETAILED DESCRIPTION OF VFS API _____________________________________10
2.1 vfopen__10

2.1.1 Differences from the Standard fopen() Call ___________________________10
2.2 vfclose__11
2.3 vfread __11
2.4 vfwrite __11
2.5 vfseek __12
2.6 vftell ___12
2.7 vgetc ___13
2.8 vferror__13
2.9 vclearerr __13
2.10 vunlink ___13

3. INTERNAL DATA STRUCTURES___14
3.1 vfs_file Structure ___14
3.2 Bits of the flags Field__15
3.3 vfs_open Structure __16

4. PORTING ENGINEER PROVIDED FUNCTIONS_________________________________17
4.1 VFS_VFS_FILE_ALLOC() _______________________________________17
4.2 VFS_VFS_FILE_FREE()___17
4.3 VFS_VFS_OPEN_ALLOC() ______________________________________17
4.4 VFS_VFS_OPEN_FREE()__18
4.5 vfs_lock() and vfs_unlock() _______________________________________18
4.6 vfs_sync() and vfs_restore() ______________________________________18

5. USER INTERFACE___22
5.1 vfsfilelist __22

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 4

5.2 vfsopenlist___22
5.3 vfssetflag and vfsclearflag__22
5.4 vfssync ___23

6. LOCAL FILE SYSTEMS ___24
7. EXTERNAL FILE SYSTEMS __25

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 5

1. OVERVIEW OF API PROVIDED BY THE VFS

The VFS exports an API that is approximately in conformance to a subset of the ISO
9899: 1990 (“ISO C”) buffered file I/O API that is characterized by the functions fopen(),
fclose(), fread(), fwrite(), etc. The functions which constitute the VFS API are listed below:

vfopen
vfclose
vfread
vfwrite
vfseek
vftell
vgetc
vferror
vunlink
vclearerr

The reader that is familiar with the standard C library buffered I/O functions will note
that the VFS API differs from the standard in that in the VFS the standard function names are
all prefixed with a ‘v’ and the type used to identify a stream handle in the standard API, FILE,
is instead named VFILE. This is done so that the VFS can coexist with a standard C library that
provides implementation of the standard API without creating naming conflicts. The calling
syntax and semantics of a given VFS function is approximately the same as those of the
correspondingly named standard C library function. There are small differences between the
VFS API and the standard which are described later in this document.

1.1 VFS Implementation

The VFS is implemented as a flat (non-hierarchical) file system in which the set of files
that exist in the file system and those files’ contents are stored in target system memory. The set
of files is implemented as a singly linked list of structures in which each structure has associated
with it a buffer that is used to contain the associated file’s contents. Part of this list can be
contained as part of the target system executable. The InterNiche Web Server and HTML
Compiler use this feature to link the files that contain Web server content with the target system
executable. The set of files contained in the list and their contents can be modified at run time to
allow this set of files to be updated dynamically.

The VFS includes the concept of a target system dependent backing store that can be
used to allow these dynamically created files to be stored to whatever non-volatile storage
(typically solid state devices like FLASH EEPROM) that is provided by the target system. The
VFS reads the backing store during system initialization in order to reconstruct the file system in
memory. Applications can then open, read, write, and close files in the VFS using the VFS API.
Data that is read from a VFILE is read from normal read/write system memory, like SRAM or
DRAM. Data that is written to a VFILE is written to normal read/write memory.

Typically (though not necessarily, this behavior is configurable by the porting engineer),
the entire subset of the VFS that has been marked as non-volatile is written from the volatile
system memory (e. g. SRAM or DRAM) to the non-volatile backing store whenever any file to

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 6

which modifications have been made is closed. This behavior allows for simple implementations
of backing store drivers for devices like FLASH which by their nature can make it complicated
to implement random access writes.

1.2 Source Files that Constitute the VFS

1.2.1 vfsfiles.h

vfsfiles.h should be included by source files that intend to use the VFS API. It
contains the definitions of data structures used by the VFS, prototypes of the functions that
constitute the VFS API and various defined constants.

1.2.2 vfsport.h

vfsport.h is intended to be a placeholder into which the porting engineer can add
structure definitions, function prototypes and defined constants that are particular to a given
target system.

1.2.3 vfsfiles.c

vfsfiles.c contains the bulk of the implementation of the VFS API.

1.2.4 vfsutil.c

vfsutil.c contains functions which implement a user interface that allows access to and
control of the VFS.

1.2.5 vfssync.c

vfssync.c contains the implementations of functions which write to and read from the
VFS backing store .

1.2.6 makefile

makefile contains make utility rules for compiling the source files that constitute the
VFS and producing a resultant vfs.lib library file that can be linked with the other object
modules to produce a target system executable.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 7

1.3 VFS Configuration Options

The VFS provides several configuration options to allow the porting engineer to
customize the VFS behavior for a particular target system. The options are described below.

1.3.1 VFS_FILES

The presence of the defined constant VFS_FILES enables the VFS described in this
document. If VFS_FILES is not defined, the inclusion of vfsfiles.h causes the VFS API entry
points to be defined to be equal to their standard C library equivalents, as in:

#define vfopen(n,m) fopen(n,m)
#define vfclose(fd) close(fd)

InterNiche applications which need access to a file system, like the Web and FTP
Servers, perform file system access via the VFS API. By undefining VFS_FILES, the porting
engineer can cause these applications to access the standard C library buffered I/O API that is
provided by their target system’s compiler package.

Example usage:

#define VFS_FILES 1

1.3.2 HT_RWVFS

HT_RWVFS defines whether the VFS is write enabled. The presence of this defined
constant causes code that enables write access to the VFS to be included in the target system
executable. If HT_RWVFS is not defined, files can be opened, read from, and closed via the
VFS, but calls which would cause the VFS to be modified, such as vfwrite() will not be
operational.

Example usage:

#define HT_RWVFS 1

1.3.3 VFS_AUTO_SYNC

The presence of the defined constant VFS_AUTO_SYNC causes the VFS to call the
function vfs_sync() to cause the memory resident VFS to be written to the backing store
anytime a modified VFS file is closed or a VFS file is deleted. If VFS_AUTO_SYNC is not
defined, these automatic calls to vfs_sync() are not made. In cases like this, vfs_sync() can
be called via a user interface command or by some other porting engineer provided method.

Example usage:

#define VFS_AUTO_SYNC 1

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 8

1.3.4 HT_EXTDEV

The presence of the defined constant HT_EXTDEV causes the VFS to make calls to
“external file systems”. External file systems are described in more detail in the section “External
File Systems” starting on page 25.

1.3.5 HT_LOCALFS

The presence of the defined constant HT_LOCALFS causes the VFS API functions to
make calls to their analogous standard C library buffered I/O function under certain
circumstances. This is described in the section “Local File Systems” starting on page 24.

1.3.6 FILENAMEMAX

The defined constant FILENAMEMAX defines the maximum length of a VFS file name.
The default value of FILENAMEMAX is 16, but the porting engineer can modify this value if 16
characters is not an appropriate length for file names on the target system.

Example usage:

#define FILENAMEMAX 50

1.3.7 VFS_MAX_TOTAL_RW_SPACE

The defined constant VFS_MAX_TOTAL_RW_SPACE defines an upper limit on the
amount of memory that the VFS will allocate for use in buffers for the containment of VFS file
contents. This allows the porting engineer to limit the amount target system memory that the
VFS will consume.

Example usage:

#define VFS_MAX_TOTAL_RW_SPACE 100000

With the above definition, attempts to write to a VFILE which requires more than 100
kilobytes of system memory to be allocated to contain the file contents will fail.

1.3.8 VFS_MAX_DYNA_FILES

The defined constant VFS_MAX_DYNA_FILES defines an upper limit on the number
of files that the VFS will create dynamically. As with VFS_MAX_TOTAL_RW_SPACE, it is a
tool that the porting engineer can use to limit the amount of memory that is consumed by the
VFS.

Example usage:

#define VFS_MAX_DYNA_FILES 100

With the above definition, attempts to create more than 100 files on the target system
will fail.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 9

1.3.9 VFS_MAX_OPEN_FILES

The defined constant VFS_MAX_OPEN_FILES defines an upper limit on the number
of files that the VFS will allow to be simultaneously open. It is another tool to limit VFS memory
usage.

Example usage:

#define VFS_MAX_OPEN_FILES 5

With the above definition if five files have been opened and not closed, the next attempt
to open a VFILE will fail.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 10

2. DETAILED DESCRIPTION OF VFS API

In the following API description, the term “current file pointer” or CFP means the
relative byte offset from the beginning of the file from which reads will be made and to which
writes will be made.

2.1 vfopen

VFILE* vfopen(char * name, char * mode);

The calling semantics of vfopen() are similar to that of the standard C library fopen().
The name parameter points to a null terminated string that defines the name of the file to be
opened. The first character of the string addressed by the mode parameter defines what actions
are to be taken when opening the file, as shown below:

mode[0] == ‘r’

If the named file does not exist, fail the open. If the file does exist, open the file and
position the CFP to the beginning of the file.

mode[0] == ‘w’

If the named file does not exist, create a file of 0 length with the given name and open it.
If the named file does exist, truncate it to a length of 0 and open it. In both cases position the
CFP to the beginning of the file.

mode[0] == ‘a’

If the named file does not exist, create a file of 0 length with the given name and open it.
If the named file does exist, open it without modifying its existing contents. In both cases
position the CFP to the end of the file.

Returns

When vfopen() is successful, it returns a handle which is a pointer to the type VFILE.
This handle should be passed to subsequent VFS functions which require a VFILE parameter to
access the file’s contents. When vfopen() is not successful it returns NULL. The reason for the
error can be retrieved by calling the function get_vfopen_error(). The values returned by
get_vfopen_error() come from the set of ENP_ errors that are described in the InterNiche
TCP/IP Technical Reference.

2.1.1 Differences from the Standard fopen() Call

Only the first character of the mode parameter is significant. The ‘b’ and ‘+’ suffixes
that have special meaning in some fopen() implementations have no meaning to vfopen(). This
means that the “open for read access only” semantic of the ‘r’ parameter that is present in
fopen() does not apply. Writes to a file that is vfopen()’ed with mode ‘r’ will not
automatically fail like they do on some systems. In that sense ‘r’ with vfopen() is more like

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 11

‘r+’ on most system’s fopen(). It also means that the ‘ascii’ mode of file opening in which
newline conversion is done in the API is not performed with the VFS. All reads and writes are
strictly binary.

The VFS supports only one current file pointer per VFILE. Some buffered I/O systems
will do reads from the “current file pointer” which is settable with fseek() but will only allow
writes to the end of the file (as weird a “standard” behavior as one can imagine). With the VFS,
reads and writes are always initiated from the CFP.

The VFS imposes no requirements on file names other than that they are not to exceed
FILENAMEMAX characters in length. Embedded spaces and punctuation characters are legal,
as are ASCII characters with the most significant bit set. A file name of 0 length is legal. Slash
(forward slash), ‘/’, and backslash, ‘\’, have no special meaning. The one exception to this is
that if a file name begins with a slash, ‘/’, it will be removed from the file name before the file is
created. Thus the file names /foo and foo refer to the same file.

2.2 vfclose

void vfclose(VFILE * vfd);

Files that are opened with vfopen() should eventually be closed with vfclose().
Depending on how the VFS has been configured and whether any changes to the file have been
made since it was opened, a call to vfclose() can cause the function vfs_sync() to be called
which allows for the RAM resident VFS to be stored to the target system’s backing store.

2.3 vfread

int vfread(char * buf, unsigned size, unsigned items, VFILE * vfd);

The calling semantics of vfread() are similar to that of the standard fread(). An
attempt to read the product of items times size bytes from the CFP of the VFILE addressed
by the vfd parameter into the caller supplied buffer addressed by the buf parameter is made. If
at least that many bytes are available in the file starting at the CFP, the call succeeds and returns
items to the caller. If less than that many bytes are available, as much as is available is copied
to the caller’s buffer and the number of bytes copied divided by size is returned to the caller.
This is an integer division, which implies that if it is important to know how many bytes were
actually read, size should be 1. In all cases the CFP is incremented by the number of bytes
successfully read.

Returns

The number of items successfully read into the caller’s buffer.

2.4 vfwrite

int vfwrite(char * buf, unsigned size, unsigned items, VFILE * vfd);

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 12

The calling semantics of vfwrite() are similar to that of the standard fwrite(). An
attempt to write the product of items times size bytes from the caller’s buffer addressed by
the buf parameter to the CFP of the VFILE addressed by the vfd parameter is made. When
successful, the CFP is incremented by the number of bytes written.

Returns

Because of its implementation, calls to vfwrite() either succeed completely and return
items, or fail completely and return 0 to indicate that the file’s contents were not modified.
There is a possible exception to this when an external or local file system is used. The reason for
the failure can be determined via a call to the vferror() function. The set of errors includes:

ENP_LOGIC - An attempt was made to do a write to a VFS in which write access is
not enabled (HT_RWVFS is not defined).

ENP_FILEIO - An attempt was made to do a write to a VFS file that is write protected.
Write protection of individual files is described later.

ENP_NOMEM - There was insufficient memory available to store the added file contents.

2.5 vfseek

long vfseek(VFILE * vfd, long offset, int mode);

The calling syntax of vfseek() is similar to that of the standard C library fseek(),
however the semantics are quite restricted. vfseek() allows the caller to change the CFP of a
VFILE. The offset parameter must be 0. Two values are accepted for the mode parameter:
SEEK_SET and SEEK_END. Thus vfseek() allows the caller to position the CFP to either
the beginning (SEEK_SET) or the end (SEEK_END) of the file.

Returns

vfseek() returns the value of the modified CFP when successful. It returns -1 when
unsuccessful. The reasons for failure usually have to do with invalid parameter values.

2.6 vftell

long vftell(VFILE * vfd);

For uncompressed files, vftell() functions much as the standard ftell(). It returns the
CFP of the specified VFILE. For compressed files, vftell() returns the uncompressed size of
the file if the CFP is at the end of the file, else is returns the byte offset into the compressed file
image of the current CFP. File compression is described in the section, “Internal Data
Structures” beginning on page 14.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 13

2.7 vgetc

int vgetc(VFILE * vfd);

vgetc() returns the value of the byte at the current CFP and increments the CFP. It
returns EOF (-1) when the end of the file is reached.

2.8 vferror

int vferror(VFILE * vfd);

vferror() returns an error code describing what went wrong on the last attempt to write
to the file.

2.9 vclearerr

void vclearerr(VFILE *vfd);

vclearerr() clears the error condition returned by vferror().

2.10 vunlink

int vunlink(char *name);

vunlink() deletes the named file from the set of files maintained by the VFS. Depending
on how the VFS has been configured, a call to vunlink() can cause the function vfs_sync() to
be called which allows for the RAM resident VFS to be stored to the target system’s backing
store.

Returns

0 if the file was successfully deleted, -1 otherwise.

The reasons for failure are:

• The named file does not exist in the VFS.
• The named file exists but was not marked as writable.

vunlink() does the same modifications to the passed in file name as does vfopen().

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 14

3. INTERNAL DATA STRUCTURES

This section describes important data structures that are used by the VFS.

3.1 vfs_file Structure

struct vfs_file {
 struct vfs_file *next;
 char name[FILENAMEMAX + 1]; /* name of file under "path" */
 unsigned short flags;
 unsigned char * data; /* pointer to file data, NULL if none */
 unsigned long real_size; /* size in bytes of file before compression */
 unsigned long comp_size; /* size in bytes of file compressed */
 unsigned long buf_size;
 /* size in bytes of memory buffer used to store file */
#ifdef WEBPORT
 /* routine to call on GET, POST, or special SSIs; NULL if none */
 int (*ssi_func)(struct vfs_file *, struct httpd *, char * args);
 /* routine to call if file is treated as CGI executable */
 int (*cgi_func)(struct httpd *, struct httpform *, char ** text);
#endif
#ifdef HT_EXTDEV
 void * method; /* pointer depends on flags */
#endif
 };

Each file in the VFS is represented by an instance of a vfs_file structure. These
structures are linked together in a list using the next field. The head of the list is stored in the
global:

struct vfs_file *vfsfiles;

The name field contains the name of the file. The flags field is a field of bits that
describes various attributes of the file. The flags field is described in more detail in the section
“Bits of the flags Field” starting on page 15.

The data field points to a buffer that contains the contents of the file. When a file is
newly created, the data field contains NULL. A buffer is allocated and assigned to the data
field when the first write is made to the file. As the file grows in size and exceeds the size of the
allocated buffer, a new buffer is allocated to replace the old buffer, the file contents in the old
buffer are copied to the new buffer and the old buffer is freed. This has an implication for the
memory requirements of the VFS. When a large file is written to such that the write exceeds the
size of the file, there is a short period between the time when the new buffer is allocated and old
buffer is freed when there must be sufficient memory available to store effectively twice the size
of the contents of the file. Porting engineers should keep this in mind when determining the
memory requirements for a target system’s VFS.

The real_size field contains the size of a compressed file before it was compressed.
This information is used by the InterNiche Web Server. The comp_size field contains the size

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 15

of actual file image. The buf_size field contains the size of the buffer addressed by the data
field.

The ssi_func and cgi_func fields are used by the InterNiche Web server and are not
further described in this document. The method field is used in conjunction with external file
systems, which are described later in this document.

3.2 Bits of the flags Field

The following defined constants identify the bits of significance in the flags field of the
vfs_file structure. For purposes of this document they are divided into two groups.

The following four bits are of significance only to the InterNiche Web Server and are
not further described in this document.

VF_AUTHBASIC 0x02
VF_AUTHMD5 0x04
VF_MAPFILE 0x08
VF_CVAR 0x10

The remainder of the bits, shown below, are significant to the VFS itself.

VF_HTMLCOMPRESSED 0x01
VF_WRITE 0x20
VF_DYNAMICINFO 0x40
VF_DYNAMICDATA 0x80
VF_NONVOLATILE 0x100
VF_STALE 0x200

The VF_HTMLCOMPRESSED bit indicates that the file image was compressed using
the InterNiche HTML compiler. When this bit is set, the functions which read the VFS, vgetc()
and vfread(), apply a decompression algorithm to the image before returning the file’s contents
to the caller. When a new file is created with vfopen() and whenever a file is written to with
vfwrite(), the VF_HTMLCOMPRESSED bit is reset. The bit can be set again after the file is
closed using the user interface commands described later. The intent here is to allow a file to be
compressed at one location, perhaps a central site or development center and uploaded to a
target system using the InterNiche FTP server. Once the FTP transfer has been completed, the
target system’s user interface can be used to set the bit so that when the Web server reads the
file, it will be decompressed. This allows target systems’ memory resources to be minimized by
taking advantage of the decompression while not incurring the code overhead on the target
system that would be required if the compression algorithm was also located on the target
system.

The VF_WRITE bit indicates that the file can be written to with vfwrite() and deleted
with vunlink(). Files that are created dynamically with vfopen() get their VF_WRITE bits set.
Files that are linked with the target system executable via the HTML compiler may or may not
have their VF_WRITE bits set depending on the requirements of the target system. The user
interface allows the VF_WRITE bits to be set or reset.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 16

The VF_DYNAMICDATA and VF_DYNAMICINFO bits are used internally by the
VFS to track whether the data buffer associated with the vfs_file structure and the vfs_file
structure itself were allocated dynamically.

The VF_NONVOLATILE bit indicates whether the file should be stored to the backing
store or not. The VF_STALE bit is used to determine whether the file’s contents have changed
since it was opened. This enables the vfclose() function to determine whether vfs_sync()
should be called.

3.3 vfs_open Structure

struct vfs_open {
 struct vfs_open * next;
 struct vfs_file * file;
 unsigned char * cmploc; /* current position in data buf */
 unsigned char * tag; /* current position in compressed tag, if any
 int error; /* last error, if any */
};

typedef struct vfs_open VFILE;

When a file is opened with vfopen(), an instance of a vfs_open structure is allocated.
The address of the structure is what is returned as the file handle to the caller.

vfs_open structures are stored in a singly linked list using the structures’ next field.
The list is headed by the global:

VFILE *vfiles;

The file field of the structure points to the vfs_file structure that is associated with the
opened file. The cmploc field points into the buffer addressed by the vfs_file structure’s data
field. It is the cmploc field that effectively implements the file’s CFP. The tag field is used by
the decompression algorithm to decompress compressed files. It is unused with regular,
uncompressed files. The error field is used to store the error that is returned by vferror().

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 17

4. PORTING ENGINEER PROVIDED FUNCTIONS

The following constructs should be provided by the porting engineer when porting the
VFS to a given target system. InterNiche provides direct support for some target systems. If the
target system to which a port is to be made is one of these supported target systems, or is close
to it, the code that implements these constructs that is located in the target system dependent
directory can be used as a starting point.

4.1 VFS_VFS_FILE_ALLOC()

VFS_VFS_FILE_ALLOC() should return a pointer to a zeroed block of memory into
which the VFS will store the contents of a vfs_file structure, thus the block of memory
returned by VFS_VFS_FILE_ALLOC() should be at least as large as a vfs_file structure.
When memory is unavailable VFS_VFS_FILE_ALLOC() should return NULL.

For many target systems, the following defined constant implementation of
VFS_VFS_FILE_ALLOC() which uses the InterNiche npalloc() function will work fine:

#define VFS_VFS_FILE_ALLOC() (struct vfs_file *) npalloc(sizeof(struct fs_file))

4.2 VFS_VFS_FILE_FREE()

The VFS will call VFS_VFS_FILE_FREE() when it no longer needs a buffer that had
previously been allocated with VFS_VFS_FILE_ALLOC(). VFS_VFS_FILE_FREE() takes a
single parameter which is the address of the buffer to be freed.

For many target systems, the following defined constant implementation of
VFS_VFS_FILE_FREE() which uses the InterNiche npfree() function will work fine:

#define VFS_VFS_FILE_FREE(x) npfree(x)

4.3 VFS_VFS_OPEN_ALLOC()

VFS_VFS_OPEN_ALLOC() should return a pointer to a zeroed block of memory into
which the VFS will store the contents of a vfs_open structure, thus the block of memory
returned by VFS_VFS_OPEN_ALLOC() should be at least as large as a vfs_open structure.
When memory is unavailable VFS_VFS_OPEN_ALLOC() should return NULL.

For many target systems, the following defined constant implementation of
VFS_VFS_OPEN_ALLOC() which uses the InterNiche npalloc() function will work fine:

#define VFS_VFS_OPEN_ALLOC() (struct vfs_open *) npalloc(sizeof(struct
fs_open))

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 18

4.4 VFS_VFS_OPEN_FREE()

The VFS will call VFS_VFS_OPEN_FREE() when it no longer needs a buffer that
had previously been allocated with VFS_VFS_OPEN_ALLOC(). VFS_VFS_OPEN_FREE()
takes a single parameter which is the address of the buffer to be freed.

For many target systems, the following defined constant implementation of
VFS_VFS_OPEN_FREE() which uses the InterNiche npfree() function will work fine:

#define VFS_VFS_OPEN_FREE(x) npfree(x)

4.5 vfs_lock() and vfs_unlock()

The VFS makes use of two singly linked lists to keep track of allocated data structures:
the list of vfs_file structures headed by the global vfsfiles and the list of vfs_open structures
headed by the global vfiles. Because some VFS API functions make additions to and deletions
from these lists, while others simply traverse them, it is important to serialize access to these lists
in order to prevent data corruption on systems in which it is possible for one process or task
that is accessing the VFS to pre-empt another. vfs_lock() and vfs_unlock() are provided for
this purpose.

Each VFS API function makes a call to vfs_lock() before it accesses the internal VFS
data structures. Each of these functions call vfs_unlock() before returning to the caller. On
target systems in which it is possible for task preemption to occur, the porting engineer should
provide an implementation of vfs_lock() that blocks on the acquisition of an RTOS semaphore
or mutex before returning to the caller and an implementation of vfs_unlock() that releases the
semaphore or mutex. On superloop based systems (systems without an operating system in
which only one task or process executes) or multitasking systems in which task preemption
cannot occur, the implementations of these function can safely be no-ops. The functions take no
parameters and return nothing to the caller.

One could implement vfs_lock() as a function that disabled interrupts, with
vfs_unlock() re-enabling them, though the porting engineer should understand that there has
been no attempt to make the VFS “real time” and the interrupt latency that would be introduced
by such an implementation could be quite long. It has been assumed in its implementation that
the VFS API will not be called from interrupt service routines. There is nothing to prevent it
from functioning from ISR context, but again the interrupt latency involved would make such an
approach unsuitable for most applications.

4.6 vfs_sync() and vfs_restore()

The function vfs_sync() is called to cause the contents of the volatile, RAM resident
VFS to be written to a target system’s non-volatile backing store. The function vfs_restore()
is called at initialization to read the contents of the VFS from the target system’s backing store
into RAM. The prototypes of these function are shown below:

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 19

void vfs_sync(struct vfs_file *vfp);
void vfs_restore(void);

vfs_sync() is called from two locations in the VFS. When a file is closed, the flags
field of the associated vfs_file structure is interrogated. If the VF_WRITE and
VF_NONVOLATILE bits of the flags field are set, it means that the file is marked as non-
volatile and has been modified since it was opened. In this case, vfs_sync() is called with the
address of the vfs_file structure passed to it as a parameter. The other occasion is when a file
is unlinked, vfs_sync() is called with a parameter of NULL. These calls are not made when the
VFS_AUTO_SYNC defined constant is not set.

When vfs_sync() is called, it should do whatever is necessary to cause the contents of
the RAM resident list of vfs_file structures headed by vfsfiles plus the associated file
contents buffers to be copied to whatever non-volatile storage is provided by the target system
in such a way that when vfs_restore() is called during initialization it will be possible for
vfs_restore() to reconstruct the list in RAM. How this is best done on a given target system
will depend on the requirements and capabilities of the target system. Two strategies come to
mind, a complete backup and an incremental backup.

The complete backup strategy is probably the simplest to implement for most small
embedded systems. In this strategy, vfs_sync() copies all of the files that are marked as non-
volatile to the system’s backing store whenever it is called. At the time of the writing of this
document, the most common non-volatile storage that is found on small embedded systems is
FLASH EEPROM. FLASH can be a cost effective means to provide a system with non-
volatile storage, however the requirement that FLASH sectors or blocks be erased in their
entirety before they can be written to makes it complicated to implement algorithms in which it is
possible to perform random writes to the device. The simplest way to write to FLASH is to
always erase the sectors to be written to before the write is performed. This makes a complete
backup strategy in which the FLASH sectors are erased and the complete VFS is written to
those sectors the most straight forward way to implement vfs_sync() on FLASH devices.

In an incremental backup strategy, only those files that need to be copied to the backing
store are copied. vfs_sync() is provided with a parameter in order to allow the porting
engineer to implement an incremental backup strategy. When the parameter is not NULL, the
vfs_file structure addressed by the parameter is what needs to be backed up. When the
parameter is NULL, it is because a file is deleted and all that needs to be recorded is that the list
of vfs_file structures has had a member deleted.

The file vfssync.c contains implementations of vfs_sync() and vfs_restore() that
implement a complete backup strategy that can be suitable for many simple embedded systems.
These functions effectively implement the saving and restoring of a file directory structure to a
non-volatile storage device. These implementations in turn call simpler functions that perform the
actual reading and writing of blocks of data to a non-volatile device. The porting engineer can
provide implementations of these simpler functions for the target system or if the target system
happens to be one of the targets for which InterNiche provides ports, the functions in the target
system’s specific directory can be used without modification. These simpler functions are
described below.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 20

void *vfs_sync_open(int clear,int *p_error);
int vfs_sync_write(void *xfd,void *buf,unsigned int len);
int vfs_sync_read(void *xfd,void *buf,unsigned int len);
int vfs_sync_close(void *xfd);

vfs_sync_open() is called by vfs_sync() and vfs_restore() to initiate writing to or
reading from the device, respectively. The clear parameter is set to 1 when vfs_sync_open()
is called by vfs_sync() and 0 when vfs_sync_open() is called by vfs_restore(). In the
InterNiche implementations of these functions for the supported target systems,
vfs_sync_open() erases the target system’s FLASH devices when clear is non-zero.
vfs_sync_open() returns a non-null pointer which is used as a device handle by the other
functions. If vfs_sync_open() fails for whatever reason, it stores a failure code in the variable
addressed by the p_error parameter and returns NULL.

vfs_sync() calls vfs_sync_write() to write data to the backing store. The xfd
parameter is the handle returned by vfs_sync_open(). vfs_sync_write() writes the len
bytes of data stored at buf to the device. The requirement is that data written to the device with
successive calls to vfs_sync_write() will be read back in the same order with successive calls
to vfs_sync_read(). The device can in this sense be thought of as a serial or FIFO device.
vfs_sync_write() returns 0 when successful and a non-zero failure code otherwise.

vfs_restore() calls vfs_sync_read() to read data from the backing store. The xfd
parameter is the handle returned by vfs_sync_open(). vfs_sync_read() reads len bytes of
data from the device into the buffer addressed by buf, returning 0 when successful and a non-
zero failure code otherwise.

vfs_sync_close() is called by vfs_sync() and vfs_restore() when they are done
writing to and reading from the device respectively. In the InterNiche implementations of this
function for the supported target systems, vfs_sync_close() simply returns 0 to indicate that it
was successful without doing any other processing.

The porting engineer can make the following assumptions in his implementations of these
function:

The logical device provided by these functions is of a serial nature. There is no need to
provide any sort of random access.

Between calls to vfs_sync_open() and vfs_sync_close() , only calls to
vfs_sync_read() or vfs_sync_write() will be made. It is not necessary to support an open
followed by a write, followed by a read, or visa-versa. In other words, vfs_sync() only does
writes and vfs_restore() only does reads, and these operations will be bounded by calls to
vfs_sync_open() and vfs_sync_close().

The call to vfs_sync_open() should reset the device so that the first call to read from
or write to the device does so starting at the logical beginning of the data in the device.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 21

As an example, suppose the target system contained a battery backed up RAM device
as a backing store and that the base address of the RAM was at memory address 8000h. Given
this simple example, simple implementations of these functions are provided below:

#define RAM_BASE 0x8000
unsigned int ram_address;
void *vfs_sync_open(int clear,int *p_error);
{
 /* reset read/write pointer to beginning of battery backed up RAM device */
 ram_address = RAM_BASE;
 /* the address of the read/write pointer is our handle in this example */
 return &ram_address;
}
int vfs_sync_close(void *xfd)
{
 return 0; /* can’t fail */
}
int vfs_sync_read(void *xfd, void *buf, unsigned int len)
{
 /* copy contents of battery backed up RAM at ram_address to buffer */
 memcpy(buf,*((unsigned int *) xfd),len);
 /* increment ram_offset by size of read */
 *((unsigned int *) xfd) += len;
 return 0; /* success */
}
int vfs_sync_write(void *xfd, void *buf, unsigned int len)
{
 /* copy contents of buffer to battery backed up RAM at ram_address */
 memcpy(*((unsigned int *) xfd), buf,len);
 /* increment ram_offset by size of write */
 *((unsigned int *) xfd) += len;
 return 0; /* success */
}

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 22

5. USER INTERFACE

The VFS includes a user interface that presents several commands that are useful for
viewing and manipulating the VFS. These commands are described below.

5.1 vfsfilelist

The command vfsfilelist will cause the contents of the VFS to be displayed at the
target system’s user interface console. Each file is represented by one line of display that
includes the file’s name, the address of the file’s contents buffer, the values of the associated
vfs_file structure’s real_size, comp_size and buf_size fields and the values of the bits in
the vfs_file structure’s flags field.

Each flags field bit is represented by a single character in which the character has a
unique value if the bit is set and is the dash character (‘-’) if the bit is not set. The mapping of
bits to characters is shown below:

H VF_HTMLCOMPRESSED
B VF_AUTHBASIC
5 VF_AUTHMD5
M VF_MAPFILE
V VF_CVAR
W VF_WRITE
I VF_DYNAMICINFO
D VF_DYNAMICDATA
N VF_NONVOLATILE
S VF_STALE

These characters are concatenated together into a string that is displayed to the right of
the file name. This string also contains characters that indicate whether the cgi_func, ssi_func,
and method fields of the vfs_file structure are NULL or not. When the field is not NULL, a
unique character is displayed else a dash is displayed. The mapping of fields to characters is
shown below:

s ssi_func
c cgi_func
m method

5.2 vfsopenlist

The command vfsopenlist will cause a listing of all open files to be displayed. Only the
name of each open file is displayed by this command. This command can be useful during
debugging to locate instances where files are being opened but not closed.

5.3 vfssetflag and vfsclearflag

On target systems in which read/write access to the VFS has been enabled
(HT_RWVFS is defined), the vfssetflag and vfsclearflag commands allow some of the bits

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 23

in the flags field of vfs_file structures to be set and reset, respectively. The syntax of the
commands is shown below:

vfssetflag <file name> <bit>
vfsclearflag <file name> <bit>

Where file name is the name of the existing VFS file to be modified and bit is a single
character which indicates which of the bits is to be modified. The mapping of bits to characters
is the same as that used in the vfsfilelist command. Not all bits can be modified in this way.
The bits that can be modified and their associated identifying characters are shown below:

H VF_HTMLCOMPRESSED
B VF_AUTHBASIC
5 VF_AUTHMD5
M VF_MAPFILE
W VF_WRITE
N VF_NONVOLATILE

There is special handling for the VF_HTMLCOMPRESSED bit that is needed for use
with WebPort, the InterNiche Web Server. When this bit is set, the HTML decompression
algorithm is executed on the file’s contents in order to determine the uncompressed size of the
file. This size is stored in the associated vfs_file structure’s real_size field. When this bit is
reset, the real_size field is set equal to the comp_size field. An application of this special
handling is outlined below to allow a compressed HTML file to be uploaded to a target system
that is already in service.

Create the HTML file at some central location.

Compress it using the InterNiche HTML Compiler.

Use a standard FTP client and the InterNiche FTP Server running on the target system
to PUT the compressed file to the target system. The file will be created on the target system
with the VF_HTMLCOMPRESSED bit reset.

Use a standard TELNET client and the InterNiche TELNET Server to TELNET to the
target system and use the vfssetflag command to set the VF_HTMLCOMPRESSED bit of
the uploaded file.

The target system’s Web server will now decompress the uploaded compressed file
when Web clients that access the server cause the file to be referenced.

5.4 vfssync

The vfssync command will cause vfs_sync() to be called on the target system. This
can be useful on target systems in which the VFS_AUTO_SYNC flag is not set.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 24

6. LOCAL FILE SYSTEMS

When the constant HT_LOCALFS is defined, the functions which make up the VFS
API will make their analogous standard C library buffered I/O function calls under certain
circumstances. This behavior can be useful on some target systems to allow files to be accessed
in the VFS and the local file system provided by the target system’s C library.

The circumstances under which a VFS function will call its analogous standard C library
function are described below.

vfopen() calls fopen()

When the name of the file passed in begins with a porting engineer provided prefix that
is defined by the constant VFS_NATIVE_PREFIX. The default value of
VFS_NATIVE_PREFIX is:

#define VFS_NATIVE_PREFIX "\\disk\\"

When vfopen() is called with file name that does not exist in the VFS and
HT_RWVFS is not defined. Therefore the VFS is not configured to allow files to be created
dynamically.

And when vfopen() is called with a file name that does not exist in the VFS but the
mode parameter begins with ‘r’, indicating that the named file must exist for the call to succeed.

vunlink() calls unlink()

When vunlink() is called with a file name that does not exist in the VFS.

vfread()calls vfread()
vfwrite() calls fwrite()
vfseek() calls fseek()
vftell() calls ftell()
vgetc() calls getc()
vferror() calls ferror()
vclearerr() calls clearerr()
vfclose() calls fclose()

When the passed in VFILE descriptor is not in the list of open files that is maintained by
the VFS.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 25

7. EXTERNAL FILE SYSTEMS

When the constant HT_EXTDEV is defined, the VFS will make calls to an “external file
system” under some circumstances. The porting engineer can define an external file system using
the following structure:

struct vfroutines {
 struct vfroutines * next; /* keep these in a list */
 VFILE* (* fopen)(char * name, char * mode);
 void (* fclose)(VFILE * vfd);
 int (* fread)(char * buf, unsigned size, unsigned items, VFILE * vfd);
 int (* fwrite)(char * buf, unsigned size, unsigned items, VFILE * vfd);
 long (* fseek)(VFILE * vfd, long offset, int mode);
 long (* ftell)(VFILE * vfd);
 int (* fgetc)(VFILE * vfd);
 int (* unlink)(char*);
};

extern struct vfroutines * vfsystems;

The vfroutines structure is used to define a set of entry points into an external file
system. To define an external file system, the porting engineer should allocate an instance of a
vfroutines structure, initialize its various fields with entry points into the code that implements
the external file system and link the structure to linked the list of structures headed by the global
vfsystems.

When vfopen() is called with a function name that does not exist in the list of vfs_file
structures, vfopen() will traverse the list of vfroutines structures headed by vfsystems and
call the function addressed by the fopen() field of each structure. This is the opportunity for the
external file system to claim ownership of the file. If the file name "belongs” in the external file
system, the fopen() function of the external file system should allocate a vfs_file structure for
the file and set its method field to address the file system’s vfroutines structure, link the
vfs_file structure into the list of vfs_file structures headed by vfsfiles, allocate a vfs_open
structure, set its file field to point to the allocated vfs_file structure, add the vfs_open
structure to the list of such structures headed by vfiles and return a pointer to the allocated
vfs_open structure. It should also do whatever initialization is necessary to create and maintain
a file in the external file system. If the file name does not “belong” to the external file system, the
external file system’s fopen() function should return NULL. Note that for external file systems,
the vfs_open_files variable must be incremented. It will be decremented by vfclose().

Subsequent to this, whenever a VFILE handle is passed to one of the VFS entry points,
the method field of the associated VFILE file field is inspected and when this method field is
found to be non-NULL, the appropriate vfroutine field function pointer is called to handle the
API request. For example, assuming that a vfopen() of a given file caused the external file
system to claim the file and allocated its own VFILE to represent the open file instance, a
subsequent call to vfread() with that VFILE handle would result in vfread() calling the fread()
entry point of the external file system because the method field of the vfs_file structure
addressed by the VFILE file field would point to the file system’s vfroutine structure.

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 26

Index
A

API entry points, 7
ascii mode, 11

B
backslash, 11
backup strategy, 19
base address, 21
bit, 23
buf, 11, 12, 20
buf_size, 15, 22
buffered I/O, 8
byte offset: relative, 10

C
CFP, 11, 12, 13, 16; defined, 10
cgi_func, 15, 22
clear, 20
clearerr(), 24
cmploc, 16
comp_size, 14, 22, 23
compressed: files, 16; HTML

file, 23
current file pointer, 10

D
dash, 22
data, 14, 16; buffer, 16
debugging, 22
decompress, 15
DRAM, 5

E
ENP_ errors, 10
ENP_FILEIO, 12
ENP_LOGIC, 12
ENP_NOMEM, 12
entry point, 25
entry points: API, 7
EOF, 13
error, 12, 16; ENP_, 10
external file system, 8, 12, 25

F
fclose(), 24
ferror(), 24
FIFO, 20
file, 16; field, 25; handle, 16
file name, 23; maximum length, 8
file pointer: current, 10
file system: external, 8, 25; flat, 5
FILENAMEMAX, 8
files: compressed, 16
flags, 14, 15, 19, 22, 23
flat file system, 5
fopen(), 10, 24, 25
fread(), 11, 25
fseek(), 11, 12, 24
ftell(), 24

FTP: client, 23; server, 7, 23;
transfer, 15

fwrite(), 24

G
get_vfopen_error(), 10
getc(), 24

H
HT_EXTDEV, 8, 25
HT_LOCALFS, 8, 24
HT_RWVFS, 7, 12, 22, 24
HTML: compiler, 5, 15, 23;

compressed file, 23;
decompression, 23

I
InterNiche: FTP Server, 7, 23;

HTML Compiler, 5, 15, 23;
provided ports, 19; TCP/IP
Technical Reference, 10;
TELNET Server, 23; Web
Server, 5, 7, 15, 23

interrupt: latency, 18; service
routine, 18

ISO 9899, 5
ISO C, 5
ISR, 18
items, 11, 12

L
len, 20
linked list, 5, 16, 18
local file system, 12
logical beginning, 20

M
makefile, 6
mapping of bits, 23
memory usage, 9
method, 22, 25
mode, 10, 12, 24
most significant bit, 11
multitasking, 18
mutex, 18

N
name, 10, 14
next, 14, 16
non-hierarchical file system, 5
non-volatile, 5
npalloc(), 17
npfree(), 17, 18

O
offset, 12; relative byte, 10
options, 7

P
p_error, 20
PUT, 23

R
r, 24
read/write access, 22
real time, 18
real_size, 14, 22, 23
relative byte offset, 10
RTOS, 18

S
SEEK_END, 12
SEEK_SET, 12
semaphore, 18
serial, 20
singly linked lists, 18
size, 11, 12
slash, 11
SRAM, 5
ssi_func, 15, 22
suffixes: b and +, 10
superloop, 18

T
tag, 16
TELNET: client, 23; server, 23

U
uncompressed size, 23
unlink(), 24

V
vclearerr(), 13, 24
VF_AUTHBASIC, 15, 22, 23
VF_AUTHMD5, 15, 22, 23
VF_CVAR, 15, 22
VF_DYNAMICDATA, 15, 22
VF_DYNAMICINFO, 15, 22
VF_HTMLCOMPRESSED, 15,

22, 23
VF_MAPFILE, 15, 22, 23
VF_NONVOLATILE, 15, 19,

22, 23
VF_STALE, 15, 16, 22
VF_WRITE, 15, 19, 22, 23
vfclose(), 11, 24
vfd, 11, 12
vferror(), 12, 13, 16, 24
VFILE, 9, 10, 12
vfiles, 18, 25
vfopen(), 10, 11, 15, 16, 24, 25
vfread(), 15, 24, 25
vfroutine, 25
vfroutines, 25
VFS memory usage, 9
vfs.lib, 6
VFS_AUTO_SYNC, 7, 19, 23
vfs_file, 14, 15, 18, 19, 22, 23,

25
VFS_FILES, 7
vfs_lock(), 18

 NICHEFILE TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 27

VFS_MAX_DYNA_FILES, 8
VFS_MAX_OPEN_FILES, 9
VFS_MAX_TOTAL_RW_SPA

CE, 8
VFS_NATIVE_PREFIX, 24
vfs_open, 16, 17, 18, 25
vfs_open_files, 25
vfs_restore(), 18, 19
vfs_sync(), 7, 11, 13, 18, 19, 23
vfs_unlock(), 18
VFS_VFS_FILE_ALLOC(), 17
VFS_VFS_FILE_FREE(), 17
VFS_VFS_OPEN_ALLOC(), 17
VFS_VFS_OPEN_FREE(), 18

vfsclearflag, 22
vfseek(), 12, 24
vfsfilelist, 22, 23
vfsfiles, 18, 19
vfsfiles.c, 6
vfsfiles.h, 6, 7
vfsopenlist, 22
vfsport.h, 6
vfssetflag, 22, 23
vfssync, 23
vfssync.c, 6, 19
vfsutil.c, 6
vfsystems, 25
vftell(), 12, 24

vfwrite(), 7, 12, 15, 24
vgetc(), 13, 15, 24
volatile, 5
vunlink(), 13, 15, 24

W
Web: client, 23; server, 5, 7, 15,

23
WebPort, 23
write enabled, 7

X
xfd, 20

