NICHEFILE

VIRTUAL FILE SYSTEM (VES)
TECHNICAL REFERENCE

interniche

technologies, inc.

51 E Campbell Ave
Suite 160
Campbell, CA. 95008

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://mww.iniche.com
support: 408.540.1160

fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We gppreciate any feedback you may have for improvements.
Please send your commentsto support@iniche.com.

The software described in this document is furnished under alicense and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Trademarks

All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of this information. The use of atemin
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

Table of Contents

1. OVERVIEW OF APl PROVIDEDBY THE VFS 5
11 VFS Implementation 5
1.2 Sour ce Filesthat Congtitutethe VFS 6

121 vidilesh 6
1.2.2 vfsport.h 6
123 vidilesc 6
124 visutlc 6
125 vfssyncc 6
126 mekeile 6
13 VFS Configuration Options 7
131 VFSFILES 7
132 HT_RWVFS 7
1.33 VFS AUTO_SYNC 7
1.34 HT_EXTDEV 8
1.35 HT_LOCALFS 8
136 FILENAMEMAX 8
1.3.7 VFS MAX _TOTAL_RW_SPACE 8
138 VFS MAX_DYNA_FILES 8
1.39 VFS MAX_OPEN_FILES 9

2. DETAILED DESCRIPTION OF VFSAPI 10

2.1 vfopen 10

211 Differencesfrom the Standard fopen() Cal 10
2.2 vfclose 11
2.3 vfread 11
24 viwrite 11
25 vfseek 12
2.6 vitell 12
2.7 vgetc 13
2.8 vierror 13
29 vclearerr 13
210 wunlink 13

3. INTERNAL DATA STRUCTURES 14
3.1 vfs file Structure 14
3.2 Bits of the flags Field 15
3.3 vfs open Structure 16

4. PORTING ENGINEER PROVIDED FUNCTIONS 17
4.1 VFS VFS FILE_ALLOC() 17
4.2 VFS VFS FILE _FREE() 17
4.3 VFES VFS OPEN_ALLOC() 17
4.4 VFS VFS OPEN_FREE() 18
4.5 vfs lock() and vfs_unlock() 18
4.6 vfs_sync() and vfs restoreg() 18

5. USERINTERFACE 22
51 visfilelist 22

NICHEFLE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 3

5.2 vfsopenlist

22

53 vfssetflag and vfsclearflag

22

54 vfssync

23

6. LOCAL FILE SYSTEMS

24

7. EXTERNAL FILE SYSTEMS

25

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

1. OVERVIEW OF APl PROVIDED BY THEVFS

The VFS exports an AP that is gpproximately in conformance to a subset of the ISO
9899: 1990 (“1SO C") huffered file /O AP that is characterized by the functionsfopen(),
fclose(), fread(), fwrite(), etc. The functions which congtitute the VFS AP are listed below:

vfopen
vfclose
vfread
viwrite
vfseek
vitell
vgetc
vferror
vunlink
vclearerr

The reeder that is familiar with the standard C library buffered I/O functions will note
that the VFS API differs from the standard in that in the VS the standard function names are
al prefixed witha ‘v’ and the type used to identify a stream handle in the standard A1, FILE,
isingtead named VFILE. Thisis done so that the VFS can coexist with a standard C library that
provides implementation of the sandard API without cregting naming conflicts. The calling
gyntax and semantics of a given VS function is approximately the same as those of the
correspondingly named standard C library function. There are small differences between the
VFS API and the standard which are described later in this document.

1.1 VFSImplementation

The VFSisimplemented as afla (non-hierarchicd) file sysemin which the st of files
that exig in the file system and thosefiles' contents are Sored in target system memory. The set
of filesisimplemented asasngly linked lig of structures in which each structure has associated
with it abuffer that is used to contain the associated file' s contents. Part of thislist can be
contained as part of the target system executable. The InterNiche Web Server and HTML
Compiler usethisfeature to link the files that contain Web server content with the target system
executable. The st of files contained in the list and their contents can be modified at run timeto
dlow this set of filesto be updated dynamicaly.

The VFS includes the concept of atarget system dependent backing store that can be
used to alow these dynamically created files to be stored to whatever non-volatile storage
(typicaly solid state devices like FLASH EEPROM) that is provided by the target systlem. The
VFS reads the backing store during system initidization in order to recongtruct the file systemin
memory. Applications can then open, read, write, and closefilesin the VFS using the VFS API.
Datathat is read from a VFILE is read from normal read/write sysem memory, like SRAM or
DRAM. Data that iswritten to a VFILE iswritten to norma read/write memory.

Typicdly (though not necessarily, this behavior is configurable by the porting enginesr),
the entire subset of the VFS that has been marked as non-volatile is written from the voletile
system memory (e. g. SRAM or DRAM) to the nonvolatile backing store whenever any fileto

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 5

which modifications have been made is closed. This behavior dlows for smple implementations
of backing store drivers for devices like FLASH which by their nature can make it complicated
to implement random access writes.

1.2 SourceFilesthat Constitutethe VFS

1.2.1 vfsfiles.h

vfsfiles.h should beincluded by sourcefilesthat intend to use the VFS AP, It
contains the definitions of data structures used by the VFS, prototypes of the functions that
congdtitute the VFS API and various defined constants.

1.2.2 vfsport.h

visport.h isintended to be a placeholder into which the porting engineer can add
dructure definitions, function prototypes and defined congtants that are particular to agiven
target system.

1.2.3 vfdfiles.c
vfsfiles.c containsthe bulk of the implementation of the VFS AF!.

1.2.4 vfsutil.c

vfsutil.c contains functions which implement a user interface that alows access to and
control of the VFS.

1.2.5 vfssync.c

vfssync.c contans the implementations of functions which write to and read from the
VFS backing store .

1.2.6 makefile

makefile contains make utility rules for compiling the source files that conditute the
VFS and producing aresultant vfs.lib library file that can be linked with the other object
modules to produce atarget system executable.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 6

1.3 VFS Configuration Options

The VFS provides saverd configuration optionsto alow the porting engineer to
customize the VFS behavior for a particular target system. The options are described below.

1.3.1 VFS FILES

The presence of the defined congtant VFS_FILES enables the VFS described in this
document. If VFS_FILES isnot defined, theinclusion of vfsfiles.h causesthe VFS API entry
points to be defined to be equal to their sandard C library equivadents, asin:

#define vfopen(n,m) fopen(n,m)
#define vfclose(fd) close(fd)

I nterNiche applications which need access to afile system, like the Web and FTP
Servers, parform file sysem access viathe VFS AP By undefining VFS_FILES, the porting
engineer can cause these applications to access the standard C library buffered 1/0O AP that is
provided by their target system’s compiler package.

Example usage:

#define VFS_FILES 1

1.3.2 HT_RWVFS

HT_RWVFS defines whether the VFSis write enabled. The presence of this defined
constant causes code that enables write access to the VFS to be included in the target system
executable. If HT_RWVFS is not defined, files can be opened, read from, and closed viathe
VFS, but calls which would cause the VFS to be modified, such as viwrite() will not be
operationd.

Example usage:

#define HT_RWVFS 1

1.3.3 VFS AUTO_SYNC

The presence of the defined congtant VFS_AUTO_SYNC causes the VFS to cdl the
function vfs_sync() to cause the memory resident VFS to be written to the backing store
anytime amodified VFSfileisdosed or aVFSfileisddeted. If VFS_AUTO_SYNC isnot
defined, these automatic callsto vis_sync() are not made. In caseslike this, vfs_sync() can
be cdled via a user interface command or by some other porting engineer provided method.

Example usage:

#define VFS_AUTO_SYNC 1

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 7

1.3.4 HT_EXTDEV

The presence of the defined constant HT_EXTDEYV causes the VFS to make calsto
“externd file sysems’. Externd file systems are described in more detall in the section “Externd
File Sysems” garting on page 25.

1.3.5 HT_LOCALFS

The presence of the defined congtant HT_LOCALFS causesthe VFS API functionsto
make cdlsto their analogous standard C library buffered I/O function under certain
circumstances. Thisis described in the section “Local File Systems” starting on page 24.

1.3.6 FILENAMEMAX

The defined congtant FILENAMEMAX defines the maximum length of a VFSfile name.
The default value of FILENAMEMAX is 16, but the porting engineer can modify thisvadueif 16
charactersis not an appropriate length for file names on the target system.

Example usage:

#define FILENAMEMAX 50

1.3.7 VFS MAX_TOTAL_RW_SPACE

The defined congtant VFS_MAX_TOTAL_RW_SPACE defines an upper limit on the
amount of memory that the VFS will dlocate for use in buffers for the containment of VFSTile
contents. This dlows the porting engineer to limit the amount target sysem memory that the
VES will consume,

Example usage:

#define VFS_MAX_TOTAL_RW_SPACE 100000

With the above definition, attempts to write to a VFILE which requires more than 100
kilobytes of system memory to be dlocated to contain the file contents will fail.

1.3.8 VFS MAX_DYNA FILES

The defined congtant VFS_MAX_DYNA_FILES defines an upper limit on the number
of filesthat the VFSwill creste dynamicdly. Aswith VFS_MAX_TOTAL_RW_SPACE,itisa
tool that the porting engineer can use to limit the amount of memory that is consumed by the
VFS.

Example ussge:

#define VFS_MAX_DYNA_FILES 100

With the above definition, attempts to creste more than 100 files on the target system
will fal.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 8

1.3.9 VFS MAX_OPEN_FILES

The defined congtant VFS_MAX_OPEN_FILES defines an upper limit on the number
of filesthat the VFSwill dlow to be smultaneoudy open. It is another toal to limit VFS memory

usage.
Example usage:

#define VFS_MAX_OPEN_FILES 5

With the above definition if five files have been opened and not closed, the next attempt
to open a VFILE will fall.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 9

2. DETAILED DESCRIPTION OF VFSAPI

In the following API description, the term “ current file pointer” or CFP meansthe
relative byte offsat from the beginning of the file from which reads will be made and to which
writes will be made.

2.1 vfopen

VFILE* vfopen(char * name, char * mode);

The cdling semantics of vfopen() are milar to that of the sandard C library fopen().
Thename parameter pointsto anull terminated string thet defines the name of thefile to be
opened. The firgt character of the string addressed by the mode parameter defines what actions
are to be taken when opening thefile, as shown below:

mode[0] ==r’

If the named file does not exi, fail the open. If the file does exist, open the file and
position the CFP to the beginning of thefile.

mode[0] == ‘W’

If the named file does not exig, create afile of 0 length with the given name and open it.
If the named file does exig, truncate it to alength of 0 and open it. In both cases position the
CFP to the beginning of thefile.

mode[0] == ‘&’

If the named file does not exig, create afile of 0 length with the given name and open it.
If the named file does exigt, open it without modifying its existing contents. In both cases
position the CFP to the end of thefile.

Returns

When vfopen() issuccessful, it returns a handle which is a pointer to the type VFILE.
This handle should be passed to subsequent VFS functions which require a VFILE parameter to
access thefile' s contents. When vfopen() isnot successful it returns NULL. The reason for the
error can be retrieved by calling the function get_vfopen_error(). The vaues returned by
get_vfopen_error() comefromtheset of ENP_ errorsthat are described in the InterNiche
TCP/IP Technica Reference.

2.1.1 Differencesfrom the Standard fopen() Call

Only the first character of the mode parameter is dgnificant. The‘b’ and *+’ suffixes
that have specid meaning in some fopen() implementations have no meaning to vfopen(). This
means that the “ open for read access only” semantic of the ‘r’ parameter that is presentin
fopen() does not apply. Writesto afilethat isvfopen()’ ed with mode ‘r’ will not
autométicdly fall like they do on some systems. In that sense ‘r’ with vfopen() ismorelike

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 10

‘r+’ on most system’sfopen(). It dso means that the ‘ascii’ mode of file opening in which
newline converson isdonein the AP is not performed with the VFS. All reads and writes are

grictly binary.

The VFS supports only one current file pointer per VFILE. Some buffered 1/0 systems
will do reads from the “current file pointer” which is settable with fseek () but will only dlow
writes to the end of the file (as weird a*“ standard” behavior as one can imagine). With the VFS,
reads and writes are dways initiated from the CFP.

The VFS impaoses no requirements on file names other than that they are not to exceed
FILENAMEMAX charactersin length. Embedded spaces and punctuation characters are legd,
as are ASCII characters with the most significant bit st. A filename of O length islegd. Slash
(forward dash), /', and backdash, *\’, have no specid meaning. The one exception to thisis
that if afile name beginswith adash, */’, it will be removed from the file name before the fileis
created. Thusthe file names /foo and foo refer to the samefile.

2.2 vfclose

void viclose(VFILE * vid);

Filesthat are opened with vfopen () should eventudly be closed with viclose().
Depending on how the VS has been configured and whether any changes to the file have been
made since it was opened, acdl to vfclose() can cause the function vfs_sync() to be called
which dlows for the RAM resdent VFS to be stored to the target system’ s backing store.

2.3 vfread

int vfread(char * buf, unsigned size, unsigned items, VFILE * vfd);

The cdling semantics of vfread() are Smilar to that of the sandard fread (). An
attempt to read the product of items timessize bytes from the CFP of the VFILE addressed
by the vfd parameter into the caler supplied buffer addressed by the buf parameter is made. If
a least that many bytes are available in the file sarting a the CFP, the call succeeds and returns
items to the cdler. If lessthan that many bytes are available, as much asis available is copied
to the cdler’ s buffer and the number of bytes copied divided by szeis returned to the cdler.
Thisisan integer divison, which impliesthat if it isimportant to know how many bytes were
actualy read, size should be 1. In al casesthe CFP isincremented by the number of bytes
successfully reed.

Returns

The number of items successfully read into the cdler’ s buffer.

2.4 viwrite

int viwrite(char * buf, unsigned size, unsigned items, VFILE * vid);

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 11

The cdling semantics of vwrite() are Smilar to that of the sandard fwrite(). An
attempt to write the product of items timessize bytes from the cdler’ s buffer addressed by
the buf parameter to the CFP of the VFILE addressed by the vfd parameter is made. When
successful, the CFP isincremented by the number of bytes written.

Returns

Because of itsimplementation, calsto vwrite() ether succeed completely and return
items, or fall completely and return 0 to indicate that the fil€' s contents were not modified.
Thereis apossible exception to this when an externd or locd file systemis used. The reason for
the fallure can be determined viaacal to the vferror() function. The set of errorsincludes:

ENP_LOGIC - An atempt was madeto do awriteto aVFSin which write accessis
not enabled (HT_RWVFS is not defined).

ENP_FILEIO - Anattempt was made to do awrite to aVFSfile that is write protected.
Write protection of individud filesis described later.

ENP_NOMEM - There was insufficient memory available to store the added file contents.

2.5 vfseek

long viseek(VFILE * vid, long offset, int mode);

Thecdling syntax of vfseek() issmilar to tha of the sandard C library fseek(),
however the semantics are quite restricted. viseek() dlowsthe cdler to change the CFP of a
VFILE. The offset parameter must be 0. Two values are accepted for the mode parameter:
SEEK_SET and SEEK_END. Thusvfseek() alowsthe caler to pogtion the CFP to either
the beginning (SEEK_SET) or the end (SEEK_END) of thefile.

Returns

viseek() returnsthe vaue of the modified CFP when successful. It returns -1 when
unsuccessful. The reasons for fallure usudly have to do with invalid parameter values.

2.6 vftdl

long vftell(VFILE * vfd);

For uncompressed files, vftell() functions much as the sandard ftell(). It returns the
CFP of the specified VFILE. For compressed files, vftell() returns the uncompressed size of
thefileif the CFP is at the end of thefile, eseis returns the byte offset into the compressed file
image of the current CFP. Fle compression is described in the section, “Internal Data
Structures’ beginning on page 14.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 12

2.7 VQetc

int vgetc(VFILE * vid);

vgetc() returnsthe vaue of the byte at the current CFP and increments the CFP. It
returns EOF (-1) when the end of the file is reached.

2.8 vferror

int vferror(VFILE * vid);

vferror() returns an error code describing what went wrong on the last attempt to write
to thefile.

2.9 vclearerr

void vclearerr(VFILE *vfd);

vclearerr() clearsthe error condition returned by vferror().

2.10 vunlink

int vunlink(char *name);

vunlink() ddetes the named file from the set of files maintained by the VFS. Depending
on how the VFS has been configured, acal to vunlink() can cause the function vfs_sync() to
be caled which adlows for the RAM resident VFS to be stored to the target system’s backing
store.

Returns
0 if thefile was successfully deleted, -1 otherwise.

Thereasonsfor fallure are

» The named file does not exis in the VFS.
» The named file exists but was not marked as writable.

vunlink() doesthe same modifications to the passed in file name as does vfopen().

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 13

3. INTERNAL DATA STRUCTURES

This section describes important data structures that are used by the VFS.

3.1 vfs file Structure

struct vfs_file {
struct vfs_file *next;
char name[FILENAMEMAX + 1]; [* name of file under "path™ */
unsigned short flags;
unsigned char * data; * pointer to file data, NULL if none */
unsigned long real_size; [* size in bytes of file before compression */
unsigned long comp_size; /* size in bytes of file compressed */
unsigned long buf_size;
[* size in bytes of memory buffer used to store file */

#ifdef WEBPORT
/* routine to call on GET, POST, or special SSIs; NULL if none */
int (*ssi_func)(struct vfs_file *, struct httpd *, char * args);
* routine to call if file is treated as CGI executable */
int (*cgi_func)(struct httpd *, struct httpform *, char ** text);

#endif

#ifdef HT_EXTDEV
void * method; [* pointer depends on flags */

#endif

3

Eachfilein the VFSis represented by an instance of avfs_file structure. These
gructures are linked together in alist usng the next field. The head of thelist is stored in the
globd:

struct vfs_file *vfsfiles;

The name fidd contains the name of thefile. The flags fidd isafidd of bitsthat
describes various attributes of thefile. Theflags field is described in more detail in the section
“Bits of the flags Fidd” starting on page 15.

The data field points to a buffer that contains the contents of thefile. When afileis
newly created, the data field contains NULL. A buffer is dlocated and assigned to the data
fidld when the first write is made to the file. As the file grows in Sze and exceeds the Sze of the
dlocated buffer, anew buffer is alocated to replace the old buffer, the file contentsin the old
buffer are copied to the new buffer and the old buffer isfreed. This has an implication for the
memory requirements of the VFS. When alargefile iswritten to such that the write exceeds the
gze of thefile, there isashort period between the time when the new buffer is alocated and old
buffer is freed when there must be sufficient memory available to store effectively twice the size
of the contents of the file. Porting engineers should keep thisin mind when determining the
memory requirements for atarget sysem’s VFS.

Thereal_size fidd contains the size of a compressed file before it was compressed.
Thisinformation is used by the InterNiche Web Server. Thecomp_size fidd containsthe sze

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 14

of actud fileimage. Thebuf_size fied contains the size of the buffer addressed by the data
fidd.

Thessi_func and cgi_func fidds are used by the InterNiche Web server and are not
further described in this document. The method fidd is used in conjunction with externd file
systems, which are described later in this document.

3.2 Bitsof theflags Field

The following defined condants identify the bits of Sgnificance in the flags fidd of the
vfs_file structure. For purposes of this document they are divided into two groups.

The following four bits are of sgnificance only to the InterNiche Web Server and are
not further described in this documen.

VF_AUTHBASIC OX02
VF_AUTHMD5 Ox04
VF_MAPFILE 0x08
VF_CVAR 0x10

The remainder of the bits, shown below, are Sgnificant to the VFS itsdlf.

VF_HTMLCOMPRESSED 0x01

VF_WRITE 0x20
VF_DYNAMICINFO Ox40
VF_DYNAMICDATA 0x80
VF_NONVOLATILE 0x100
VF_STALE 0x200

TheVF_HTMLCOMPRESSED hit indicates that the file image was compressed using
the InterNiche HTML compiler. When this bit is set, the functions which read the VFS, vgetc()
and vfread(), apply a decompression agorithm to the image before returning the file' s contents
to the cdler. When anew fileis created with vfopen() and whenever afile iswritten to with
viwrite(), the VF_HTMLCOMPRESSED bit is reset. The bit can be st again after thefileis
closed using the user interface commands described later. The intent hereisto dlow afileto be
compressed at one location, perhaps a central site or development center and uploaded to a
target system using the InterNiche FTP server. Once the FTP transfer has been completed, the
target system’ s user interface can be used to set the bit so that when the Web server reads the
file, it will be decompressed. This alowstarget syssems memory resources to be minimized by
taking advantage of the decompression while not incurring the code overhead on the target
system that would be required if the compression algorithm was dso located on the target
sysem.

The VF_WRITE hit indicates that the file can be written to with vfwrite() and deleted
with vunlink(). Filesthat are created dynamicaly with vfopen() get their VF_WRITE bits set.
Flesthat are linked with the target system executable viathe HTML compiler may or may not
havether VF_WRITE bits set depending on the requirements of the target system. The user
interface dlowsthe VF_WRITE hitsto be set or reset.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 15

The VF_DYNAMICDATAand VF_DYNAMICINFO bhits are used interndly by the
VFSto track whether the data buffer associated with the vfs_file structure and the vfs_file
dructure itself were dlocated dynamicaly.

The VF_NONVOLATILE hit indicates whether the file should be stored to the backing
store or not. The VF_STALE hit is used to determine whether the file's contents have changed
snceit was opened. This enables the viclose() function to determine whether vfs_sync()
should be called.

3.3 vfs open Structure

struct vfs_open {
struct vfs_open * next;
struct vfs_file * file;

unsigned char * cmploc; [* current position in data buf */
unsigned char * tag; [* current position in compressed tag, if any
int error; [* last error, if any */

¥
typedef struct vfs_open VFILE;

When afileis opened with vfopen(), an ingtance of avfs_open structureis alocated.
The address of the structure iswhat is returned as the file handle to the caller.

vfs_open gructures are gored in asngly linked list using the structures’ next fidd.
Theligt is headed by the globd:

VFILE *Vfiles;

Thefile field of the structure pointsto the vfs_file structure that is associated with the
opened file. The cmploc fied points into the buffer addressed by the vfs_file structure’sdata
fidd. It isthe cmploc fidd that effectively implementsthefile s CFP. Thetag fidd isused by
the decompression agorithm to decompress compressed files. It is unused with regular,
uncompressed files. The error field is used to store the error that isreturned by vferror().

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 16

4. PORTING ENGINEER PROVIDED FUNCTIONS

The following congtructs should be provided by the porting engineer when porting the
VFSto agiven target system. InterNiche provides direct support for some target systems. If the
target system to which aport isto be made is one of these supported target systems, or is close
to it, the code that implements these congtructs that is located in the target system dependent
directory can be used as a starting point.

4.1 VFS VFS FILE_ALLOC()

VFS_VFS_FILE_ALLOC() should return a pointer to a zeroed block of memory into
which the VFS will store the contents of avfs_file dructure, thusthe block of memory
returned by VFS_VFS_FILE_ALLOC() should be at least aslarge asavfs_file structure.
When memory isunavalable VFS_VFS_FILE_ALLOC() should return NULL.

For many target systems, the following defined constant implementation of
VFS VFS_FILE_ALLOC() which usesthe InterNiche npalloc() function will work fine

#define VFS_VFS_FILE_ALLOC() (struct vfs_file *) npalloc(sizeof(struct fs_file))

4.2 VFS_VFS FILE_FREE()

TheVFSwill cdl VFS_VFS_FILE_FREE() when it no longer needs a buffer that had
previoudy been dlocated with VFS_VFS_FILE_ALLOC(). VFS_VFS_FILE_FREE() takesa
sngle parameter which is the address of the buffer to be freed.

For many target systems, the following defined congtant implementation of
VFS_VFS_FILE_FREE() which uses the InterNiche npfree() function will work fine:

#define VFS_VFS_FILE_FREE(X) npfree(x)

4.3 VFS VFS OPEN_ALLOC()

VFS_VFS_OPEN_ALLOC() should return a pointer to a zeroed block of memory into
which the VFS will store the contents of avfs_open structure, thus the block of memory
returned by VFS_VFS_OPEN_ALLOC() should be a least aslarge asavfs_open sructure.
When memory isunavalable VFS_VFS_OPEN_ALLOC() should return NULL.

For many target systems, the following defined constant implementation of
VFS_VFS_OPEN_ALLOC() which usesthe InterNiche npalloc() function will work fine

#define VFS_VFS_OPEN_ALLOC() (struct vfs_open *) npalloc(sizeof(struct
fs_open))

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 17

4.4 VFS VFS OPEN_FREE()

The VFESwill cdl VFS_VFS_OPEN_FREE() when it no longer needs a buffer that
had previoudy been alocated with VFS_VFS_OPEN_ALLOC(). VFS_VFS_OPEN_FREE()
takes a single parameter which is the address of the buffer to be freed.

For many target systems, the following defined congtant implementation of
VFS_VFS_OPEN_FREE() which usesthe InterNiche npfree() function will work fine:

#define VFS_VFS_OPEN_FREE(x) npfree(x)

4.5 vfs lock() and vfs unlock()

The VFS makes use of two singly linked lists to keep track of allocated data structures:
thelig of vfs_file structures headed by the globa vfsfiles and thelist of vfs_open dructures
headed by the globd vfiles. Because some VFS API functions make additions to and deletions
from these ligts, while others Smply traverse them, it isimportant to seridize accessto these lists
in order to prevent data corruption on systlemsin which it is possible for one process or task
that is accessing the VFS to pre-empt another. vfs_lock() and vfs_unlock() are provided for
this purpose.

Each VFS AP function makes acdl to vfs_lock() before it accessesthe internal VFS
data gtructures. Each of these functions cdl vfs_unlock() before returning to the caler. On
target sysemsin which it is possible for task preemption to occur, the porting engineer should
provide an implementation of vfs_lock() that blocks on the acquisition of an RTOS semaphore
or mutex before returning to the caler and an implementation of vfs_unlock() that releasesthe
semaphore or mutex. On superl oop based systems (systems without an operating system in
which only one task or process executes) or multitasking systemsin which task preemption
cannot occur, the implementations of these function can safely be no-ops. The functions take no
parameters and return nothing to the caller.

One could implement vfs_lock() asafunction that disabled interrupts, with
vfs_unlock() re-enabling them, though the porting engineer should understand that there has
been no attempt to make the VFS “red time” and the interrupt latency that would be introduced
by such an implementation could be quite long. It has been assumed in its implementation thet
the VFS API will not be caled from interrupt service routines. There is nothing to prevent it
from functioning from ISR context, but again the interrupt latency involved would make such an
gpproach unsuitable for most gpplications.

4.6 vfs sync() and vfs restore()

Thefunction vfs_sync() is cdled to cause the contents of the volatile, RAM resident
VFS to be written to atarget system’s non-volatile backing store. The function vfs_restore()
iscdled at initidization to read the contents of the VFS from the target system’ s backing store
into RAM. The prototypes of these function are shown below:

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 18

void vfs_sync(struct vfs_file *vfp);
void vfs_restore(void);

vfs_sync() iscdled from two locations in the VFS. When afileis closed, theflags
fiedd of the associated vfs_file dructureisinterrogated. If the VF_WRITE and
VF_NONVOLATILE bits of theflags fidd are s, it meansthat the file is marked as non
volatile and has been modified since it was opened. In this case, vfs_sync() is caled with the
address of the vfs_file structure passed to it as a parameter. The other occasion iswhen afile
isunlinked, vfs_sync() is called with a parameter of NULL. These calls are not made when the
VFS_AUTO_SYNC defined congant is not set.

When vfs_sync() iscdled, it should do whatever is necessary to cause the contents of
the RAM resident list of vfs_file structures headed by vfsfiles plusthe associated file
contents buffers to be copied to whatever non-volatile storage is provided by the target system
in such away that when vfs_restore() iscdled during initidization it will be possble for
vfs_restore() to recongruct thelist in RAM. How thisis best done on a given target system
will depend on the requirements and capabilities of the target system. Two Strategies come to
mind, a complete backup and an incremental backup.

The complete backup srategy is probably the smplest to implement for most small
embedded systems. In this strategy, vis_sync() copiesdl of the files that are marked as non
volatile to the system’ s backing store whenever it is caled. At the time of the writing of this
document, the most common non-volatile storage thet is found on smal embedded systemsis
FLASH EEPROM. FLASH can be a cost effective means to provide a system with non-
volatile storage, however the requirement that FLASH sectors or blocks be erased in their
entirety before they can be written to makes it complicated to implement dgorithmsinwhichiitis
possible to perform random writes to the device. The smplest way to writeto FLASH isto
aways erase the sectors to be written to before the write is performed. This makes acomplete
backup strategy in which the FLASH sectors are erased and the complete VFS is written to
those sectors the most straight forward way to implement vfs_sync() on FLASH devices.

In an incrementa backup strategy, only those files that need to be copied to the backing
store are copied. vfs_sync() is provided with a parameter in order to alow the porting
engineer to implement an incrementa backup strategy. When the parameter isnot NULL, the
vfs_file structure addressed by the parameter is what needs to be backed up. When the
parameter isNULL, it isbecause afileis deleted and all that needs to be recorded isthat the list
of vfs_file structures has had a member deleted.

Thefilevfssync.c containsimplementations of vfs_sync() and vfs_restore() that
implement a complete backup strategy that can be suitable for many simple embedded systems.
These functions effectively implement the saving and restoring of afile directory sructureto a
non-volatile sorage device. These implementations in turn cal smpler functions that perform the
actua reading and writing of blocks of data to a non-volatile device. The porting engineer can
provide implementations of these Smpler functions for the target system or if the target system
happens to be one of the targets for which InterNiche provides ports, the functionsin the target
system’ s specific directory can be used without modification. These smpler functions are
described below.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 19

void *vfs_sync_open(int clear,int *p_error);

int vfs_sync_write(void *xfd,void *buf,unsigned int len);
int vfs_sync_read(void *xfd,void *buf,unsigned int len);
int vfs_sync_close(void *xfd);

vfs_sync_open() iscdled by vfs_sync() and vfs_restore() to initiate writing to or
reading from the device, respectively. Theclear parameter is set to 1 when vfs_sync_open()
iscdled by vfs_sync() and 0when vfs_sync_open() iscdled by vfs_restore(). Inthe
InterNiche implementations of these functions for the supported target systems,
vfs_sync_open() erasesthe target system’s FLASH devices when clear is non-zero.
vfs_sync_open() returns a nor-null pointer which is used as a device handle by the other
functions. If vfs_sync_open() falsfor whatever reason, it Sores afailure code in the varigble
addressed by the p_error parameter and returns NULL.

vfs_sync() cdlsvfs_sync_write() to write data to the backing store. The xfd
parameter isthe handle returned by vfs_sync_open(). vfs_sync_write() writesthelen
bytes of data stored at buf to the device. The requirement is that data written to the device with
successive calsto vfs_sync_write() will be read back in the same order with successive cals
tovfs_sync_read(). The device can in this sense be thought of as a serid or FIFO device.
vfs_sync_write() returns O when successful and a non-zero failure code otherwise.

vfs_restore() cdlsvfs_sync_read() to read data from the backing store. The xfd
parameter isthe handle returned by vfs_sync_open(). vfs_sync_read() reads len bytes of
data from the device into the buffer addressed by buf, returning O when successful and a non
zero failure code otherwise.

vfs_sync_close() iscdled by vfs_sync() and vfs_restore() whenthey are done
writing to and reading from the device respectively. In the InterNiche implementations of this
function for the supported target systems, vfs_sync_close() smply returns O to indicate thet it
was successful without doing any other processing.

The porting engineer can make the fallowing assumptions in his implementations of these
function:

Thelogica device provided by these functionsis of a serid nature. There is no need to
provide any sort of random access.

Between cdlsto vfs_sync_open() and vfs_sync_close() , only cdlsto
vfs_sync_read() or vfs_sync_write() will be made. It is not necessary to support an open
followed by awrite, followed by aread, or visa-versa. In other words, vfs_sync() only does
writesand vfs_restore() only does reads, and these operations will be bounded by calsto
vfs_sync_open() and vfs_sync_close().

Thecdl tovfs_sync_open() should resat the device so thet the first call to read from
or write to the device does so garting at the logica beginning of the data in the device.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 20

As an example, suppose the target system contained a battery backed up RAM device
as a backing store and that the base address of the RAM was at memory address 8000h. Given
this smple example, Imple implementations of these functions are provided below:

#define RAM_BASE 0x8000
unsigned int ram_address;
void *vfs_sync_open(int clear,int *p_error);

{
[* reset read/write pointer to beginning of battery backed up RAM device */
ram_address = RAM_BASE;
[* the address of the read/write pointer is our handle in this example */
return &ram_address;

}

int vfs_sync_close(void *xfd)

{

return O; /* can't fail */
int vfs_sync_read(void *xfd, void *buf, unsigned int len)

[* copy contents of battery backed up RAM at ram_address to buffer */
memcpy(buf,*((unsigned int *) xfd),len);

/* increment ram_offset by size of read */

*((unsigned int *) xfd) += len;

return O; [* success */
}
int vfs_sync_write(void *xfd, void *buf, unsigned int len)
{
[* copy contents of buffer to battery backed up RAM at ram_address */
memcpy(*((unsigned int *) xfd), buf,len);
[* increment ram_offset by size of write */
*((unsigned int *) xfd) += len;
return O; [* success */
}

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 21

5. USER INTERFACE

The VFSincludes auser interface that presents several commands that are useful for
viewing and manipulating the VFS. These commands are described below.

5.1 vfdfilelist

The command vfsfilelist will cause the contents of the VFS to be displayed at the
target system’ s user interface console. Each file is represented by one line of display that
includes the fil€ s name, the address of the fil€' s contents buffer, the values of the associated
vfs_file dructure' sreal_size, comp_size and buf_size fidds and the vaues of the bitsin
thevfs_file gructure sflags fidd.

Each flags fidd bit is represented by a sngle character in which the character hasa
unigue vaue if the bit is set and is the dash character (*-') if the bit is not set. The mapping of
bits to charactersis shown below:

VF_HTMLCOMPRESSED
VF_AUTHBASIC
VF_AUTHMD5
VF_MAPFILE

VF_CVAR

VF_WRITE
VF_DYNAMICINFO
VF_DYNAMICDATA
VF_NONVOLATILE
VF_STALE

wzu-s<zuwzI

These characters are concatenated together into a string that is displayed to the right of
the file name. This string aso contains characters that indicate whether thecgi_func, ssi_func,
and method fidds of thevfs_file structure are NULL or not. When the fidld isnot NULL, a
unique character is displayed else a dash is displayed. The mapping of fieldsto charactersis
shown below:

s ssi_func

c cgi_func
m method

5.2 vfsopenlist

The command visopenlist will cause aliging of al open filesto be displayed. Only the
name of each open fileis displayed by this command. This command can be useful during
debugging to locate instances where files are being opened but not closed.

5.3 vfssetflag and vfsclearflag

On target systems in which read/write access to the VFS has been enabled
(HT_RWVFS isdefined), the vssetflag and visclearflag commands dlow some of the bits

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 22

intheflags fidd of vfs_file structuresto be set and reset, respectively. The syntax of the
commands is shown below:

vissetflag <file name> <bit>
visclearflag <file name> <bit>

Where file name isthe name of the exiting VFSfile to be modified and bit isasngle
character which indicates which of the bitsis to be modified. The mapping of bitsto characters
isthe same asthat used in the vfsfilelist command. Not dl bits can be modified in thisway.
The bits that can be modified and their associated identifying characters are shown below:

VF_HTMLCOMPRESSED
VF_AUTHBASIC
VF_AUTHMDS5
VF_MAPFILE

VF_WRITE
VF_NONVOLATILE

zszowzx

Thereis gpecid handling for the VF_ HTMLCOMPRESSED hit that is needed for use
with WebPort, the InterNiche Web Server. When this bit is set, the HTML decompression
agorithm is executed on thefile' s contentsin order to determine the uncompressed size of the
file. Thisszeis gored in the associated vis_file structure sreal_size fidd. When thishit is
reset, thereal_size fidd is set equd to thecomp_size fidd. An gpplication of this specid
handling is outlined below to alow a compressed HTML file to be uploaded to atarget system
that is aready in service.

Create the HTML file at some central location.
Compressit usng the InterNiche HTML Compiler.

Use astandard FTP client and the InterNiche FTP Server running on the target system
to PUT the compressed file to the target system. The file will be created on the target system
with theVF_HTMLCOMPRESSED bit reset.

Useagandard TELNET client and the InterNiche TELNET Server to TELNET to the
target system and use the vissetflag command to set the VF_ HTMLCOMPRESSED bit of
the uploaded file.

The target system’s Web server will now decompress the uploaded compressed file
when Web dients that access the server cause the file to be referenced.

5.4 vissync

The vfssync command will causevfs_sync() to be caled on the target system. This
can be useful on target systemsin whichthe VFS_AUTO_SYNC flag is not .

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 23

6. LOCAL FILE SYSTEMS

When the constant HT_LOCALFS is defined, the functions which make up the VFS
API will make their anadogous standard C library buffered 1/0 function cals under certain
circumstances. This behavior can be useful on some target systems to dlow filesto be accessed
in the VFS and the locd file system provided by the target sysem’s C library.

The crcumstances under which a VFS function will call its andogous standard C library
function are described below.

viopen() calls fopen()

When the name of the file passed in begins with a porting engineer provided prefix that
is defined by the congtant VFS_NATIVE_PREFIX. The default vaue of
VFS_NATIVE_PREFIX is

#define VFS_NATIVE_PREFIX "\disk\\"

When vfopen() is cdled with file name that does not exist in the VFS and
HT_RWVFS isnot defined. Therefore the VFSis not configured to dlow files to be created
dynamicaly.

And when vfopen() is cdled with afile name that does not exist in the VFS but the
mode parameter beginswith ‘r’, indicating that the named file mugt exist for the call to succeed.

vunlink() calls unlink()
When vunlink() is caled with afile name that does not exist inthe VFS,

viread()calls viread()
viwrite() calls fwrite()
viseek() calls fseek()
vitell() callsftell()

vgetc() calls getc()
vierror() callsferror()
vclearerr() callsclearerr()
vfclose() calls fclose()

When the passed in VFILE descriptor isnot in the list of open filesthat is maintained by
the VFS.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 24

/. EXTERNAL FILE SYSTEMS

When the constant HT_EXTDEYV is defined, the VFS will make cdlsto an “externd file
system?” under some circumstances. The porting engineer can define an externd file system using
the following structure:

struct vfroutines {
struct vfroutines * next; /* keep these in a list */
VFILE* (* fopen)(char * name, char * mode);
void (* fclose)(VFILE * vid);
int (* fread)(char * buf, unsigned size, unsigned items, VFILE * vid);
int (* fwrite)(char * buf, unsigned size, unsigned items, VFILE * vfd);
long (* fseek)(VFILE * vfd, long offset, int mode);
long (* ftell)(VFILE * vfd);
int (* fgetc)(VFILE * vid);
int (* unlink)(char®);

|3

extern struct vfroutines * vfsystems;

Thevfroutines structureis used to define aset of entry pointsinto an externd file
system. To define an externd file system, the porting engineer should dlocate an ingtance of a
vfroutines gructure, initidize its various fields with entry pointsinto the code that implements
the external file system and link the structure to linked the list of structures headed by the globa
vfsystems.

When vfopen() iscdled with afunction name that does not exid in thelist of vfis_file
structures, vfopen() will traversethelist of vfroutines structures headed by visystems and
cal the function addressed by the fopen() field of each structure. Thisis the opportunity for the
externd file sysem to clam ownership of thefile. If thefile name "beongs’ in the externd file
system, the fopen() function of the externd file sysem should dlocate avfs_file structure for
the file and set its method field to address the file system’svfroutines sructure, link the
vfs_file dructureinto thelist of vfs_file structures headed by vfsfiles, dlocate avfs_open
dructure, set itsfile field to point to the alocated vfs_file structure, add the vfs_open
dructure to the list of such structures headed by vfiles and return a pointer to the alocated
vfs_open gructure. It should also do whatever initidization is necessary to cregte and maintain
afilein the externd file system. If the file name does not “belong” to the externd file system, the
externd file sysem’sfopen() function should return NULL. Note thet for externd file systems,
thevfs_open_files variable must be incremented. It will be decremented by viclose().

Subsequent to this, whenever a VFILE handle is passed to one of the VFS entry points,
themethod fidd of the associated VFILE file fidd isingpected and when thismethod fidd is
found to be non-NULL, the appropriate vfroutine field function pointer is cdled to handle the
AP request. For example, assuming that avfopen() of agiven file caused the externd file
system to clam thefile and alocated its own VFILE to represent the open fileindance, a
subsequent cal to viread() with that VFILE handle would result in viread() cdling thefread()
entry point of the externd file system because the method fidd of the vfs_file structure
addressed by the VFILE file fidd would point to the file sysem’svfroutine structure.

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 25

| ndex

A
API entry points, 7
ascii mode, 11

B
backdlash, 11
backup strategy, 19
base address, 21
bit, 23
buf, 11, 12, 20
buf_size, 15, 22
buffered 1/0, 8
byte offset: relative, 10

C
CFP, 11, 12, 13, 16; defined, 10
cgi_func, 15, 22
clear, 20
clearerr(), 24
cmploc, 16
comp_size, 14, 22,23
compressed: files, 16; HTML
file, 23
current file pointer, 10
D
dash, 22
data, 14, 16; buffer, 16
debugging, 22
decompress, 15
DRAM, 5

E
ENP_errors, 10
ENP_FILEIO, 12
ENP_LOGIC, 12
ENP_NOMEM, 12
entry point, 25
entry points: API, 7
EOF, 13
error, 12, 16; ENP_, 10
external file system, 8, 12, 25

F
fclose(), 24
ferror(), 24
FIFO, 20
file, 16; field, 25; handle, 16
file name, 23; maximum length, 8
file pointer: current, 10

file system: external, 8, 25; flat, 5

FILENAMEMAX, 8
files: compressed, 16
flags, 14, 15, 19, 22, 23
flat file system, 5
fopen(), 10, 24, 25
fread(), 11, 25

fseek(), 11, 12, 24
ftell(), 24

FTP: client, 23; server, 7, 23;
transfer, 15
fwrite(), 24

G
get_vfopen_error(), 10
getc(), 24
H
HT_EXTDEV, 8, 25
HT_LOCALFS, 8, 24
HT_RWVFS, 7, 12, 22, 24
HTML: compiler, 5, 15, 23;
compressed file, 23;
decompression, 23
|
InterNiche: FTP Server, 7, 23;
HTML Compiler, 5, 15, 23;
provided ports, 19; TCP/IP
Technical Reference, 10;
TELNET Server, 23; Web
Server, 5, 7, 15, 23
interrupt: latency, 18; service
routine, 18
1SO 9899, 5
ISOC,5
ISR, 18
items, 11, 12
L
len, 20
linked ligt, 5, 16, 18
locdl file system, 12
logical beginning, 20
M
makefile, 6
mapping of bits, 23
memory usage, 9
method, 22, 25
mode, 10, 12, 24
most significant bit, 11
multitasking, 18
mutex, 18
N
name, 10, 14
next, 14, 16
non-hierarchical file system, 5
non-volatile, 5
npalloc(), 17
npfree(), 17, 18
@]
offset, 12; relative byte, 10
options, 7
P
p_error, 20
PUT, 23

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

R
r, 24
read/write access, 22
red time, 18
rea_size, 14, 22,23
relative byte offset, 10
RTOS, 18

S
SEEK_END, 12
SEEK_SET, 12
semaphore, 18
serial, 20
singly linked lists, 18
size, 11, 12
slash, 11
SRAM, 5
ssi_func, 15, 22
suffixes: b and +, 10
superloop, 18

T
tag, 16
TELNET: client, 23; server, 23

U
uncompressed size, 23
unlink(), 24

V
vclearerr(), 13, 24
VF_AUTHBASIC, 15, 22, 23
VF_AUTHMDS5, 15, 22, 23
VF_CVAR, 15, 22
VF_DYNAMICDATA, 15, 22
VF_DYNAMICINFO, 15, 22
VF_HTMLCOMPRESSED, 15,
22,23
VF_MAPFILE, 15, 22, 23
VF_NONVOLATILE, 15, 19,
22,23
VF_STALE, 15, 16, 22
VF_WRITE, 15, 19, 22, 23
vfclose(), 11, 24
vfd, 11, 12
vferror(), 12, 13, 16, 24
VFILE, 9, 10, 12
vfiles, 18, 25
vfopen(), 10, 11, 15, 16, 24, 25
vfread(), 15, 24, 25
vfroutine, 25
vfroutines, 25
VFS memory usage, 9
vfslib, 6
VFS AUTO _SYNC, 7,19, 23
vfs file, 14, 15, 18, 19, 22, 23,
25
VFS FILES, 7
vfs lock(), 18

26

VFS MAX_DYNA_FILES, 8

VFS MAX_OPEN_FILES, 9

VFS MAX_TOTAL_RW_SPA
CE, 8

VFS _NATIVE_PREFIX, 24

vfs open, 16, 17, 18, 25

vfs_open files, 25

vfs restore(), 18, 19

vfs sync(), 7, 11, 13, 18, 19, 23

vfs unlock(), 18

VFS VFS FILE_ALLOC(), 17

VFS VFS FILE FREE(), 17

VFS VFS OPEN_ALLOC(), 17

VFS VFS OPEN_FREE(), 18

visclearflag, 22
viseek(), 12, 24
vidfilelist, 22, 23
visfiles, 18, 19
visfiles.c, 6
visfiles.h, 6, 7
visopenlist, 22
vfsport.h, 6
vissetflag, 22, 23
vfssync, 23
vfssync.c, 6, 19
vfsutil.c, 6
vfsystems, 25
vitell(), 12, 24

NICHEFILE TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

viwrite(), 7, 12, 15, 24
vgetc(), 13, 15, 24
volatile, 5

vunlink(), 13, 15, 24

W
Web: client, 23; server, 5, 7, 15,
23
WebPort, 23
write enabled, 7

X
xfd, 20

27

