

NICHETASK

MULTITASKING SCHEDULER
TECHNICAL REFERENCE

51 E Campbell Ave
Suite 160

Campbell, CA. 95008

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 2

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://www.iniche.com
support: 408.540.1160
fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We appreciate any feedback you may have for improvements.
Please send your comments to support@iniche.com.

The software described in this document is furnished under a license and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Portions of the InterNiche source code are provided under the copyright of the respective
owners and are also acknowledged in the appropriate source files:

Copyright © 1984, 1985, 1986 by the Massachusetts Institute of Technology

Copyright © 1982, 1985, 1986 by the Regents of the University of California.
All Rights Reserved

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of CMU
not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

Trademarks
All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of this information. The use of a term in
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 3

TABLE OF CONTENTS

1. OVERVIEW-- 4
1.1 Source Files --- 4
1.2 task.h Data Types --- 4
1.3 Task Stacks --- 5
1.4 The Task Control Structure --- 5
1.5 General Task Behavior -- 6
1.6 Interrupts and Tasks-- 6

2. TK_ MACRO DEFINITIONS --- 7
2.1 Portable Task Description Structure --- 8
2.2 TK_ Task Control Definitions -- 8
2.3 Tasking System Designs - Spinning vs. Event-blocking --------------------------- 9
2.4 Priorities --10

3. THE TK MACROS--11
TK_NEWTASK() --- 11
TK_APP_BLOCK() --- 12
TK_APP_WAKE() -- 13
TK_SLEEP()--- 14
TK_NETRX_BLOCK() --- 15
TK_CONS_BLOCK() -- 16
TK_OBJECT_REF -- 17
TK_THIS() -- 18
TK_WAKE() -- 19
TK_WAKE_EVENT () -- 20
TK_YIELD()--- 21
tk_yield()--- 21
TK_RETURN_ERROR() -- 22
TK_RETURN_OK()--- 22

4. USER TASKING FUNCTIONS --23
tk_new() --- 23
tk_init()--- 25
tk_ev_block() -- 26
tk_ev_wake() -- 27
tk_block() -- 28
tk_exit() -- 29
tk_wake() -- 30
tk_next() --- 31
tk_kill()--- 32
tk_sleep() -- 33
tk_stats() --- 34

5. LOW-LEVEL ROUTINES ---35
tk_frame()-- 35
tk_switch() --- 36
tk_getsp() -- 37

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 4

1. OVERVIEW

This document describes NicheTask, the InterNiche multitasking scheduler software,
and the interface specifications for it. This multitasking system contains only task control logic -
no semaphores, mailboxes, etc. Tasks are scheduled in a round-robin manner and are not
preempted. Once it gains control, each task runs until it voluntarily blocks. It is up to the
programmer who uses this package to ensure that tasks do not run for indefinite amounts of time
by relinquishing the CPU via calls to tk_block() or tk_next(), or one of the blocking TK_
macros described below.

The API to the InterNiche tasking system is designed so that it can be easily mapped to
a more sophisticated (i.e. real time) system by #defining task calls to the RTOS calls. All
InterNiche applications which use Multitasking or support a Multitasking version are
implemented using macros which start with the characters TK_, and ports are provided which
show how these macros can be easily mapped to a variety of commercial RTOS systems. The
TK_ macros are defined in the section starting on page 7

This allows projects to begin development on an InterNiche system and “graduate” to a
RTOS if it turns out to be required. Code written for the InterNiche system can usually be
ported by creating the definitions and recompiling. All InterNiche networking code and
applications are written using the TK_ macros to facilitate such porting.

Tasks can be created and deleted dynamically by calls to the tasking API. Each task
has a stack and a task control structure. Tasks are created via the routine tk_new(), which
returns is a pointer to this structure. This pointer is thereafter used as a task ID.

The bulk of the tasking system is written in portable ANSI C code. Three low-level
routines need to be provided if you port this system to an unsupported system. Since these
routines are generally implemented in assembly language, this means you may need to hand edit
these routines if you use an assembler not supported by InterNiche.

1.1 Source Files

The entire C version is implemented in two C language files. These are:

task.c
task.h

These are generally found in the InterNiche \misclib directory.

1.2 task.h Data Types

To call the tasking package from within a source file, you should include the file
\misclib\task.h which defines the structures and types used in the tasking package. In
InterNiche networking code this files is usually included in the scope of ipport.h or osport.h.
There is a task control structure associated with each task instance, and a defined type task,

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 5

which is a synonym of that structure. Each task structure contains a pointer to the tasks stack
space (described below). This task structure and its stack area the are allocated as separate
blocks via the TK_ALLOC() and STK_ALLOC() macros. Generally these are #defined to
calloc() and free().

1.3 Task Stacks

Each task structure contains a pointer to the task’s stack. The pointer is a defined type
stack_t, usually typedef'fed to an integer; thus each task’s stack is an array of integers in
memory. Note that some CPU/compiler combinations use stack space starting with the lowest
address and go up, i.e. a push increments the stack pointer, and other systems start at the
highest address of stack space and move down. The former are referred to as “bottom up”
stacks and the later as “top down”. You will need to indicate one of these options by #defining
either STK_TOPDOWN or STK_BOTTOMUP.

1.4 The Task Control Structure

struct task {
 stack *tk_fp; /* task's current frame ptr */
 char *tk_name; /* the task's name */
 int ev_flags; /* flag set if task is scheduled */
 struct task *tk_next; /* pointer to next task */
 unsigned tk_count; /* number of wakeups */
 unsigned *tk_guard; /* pointer to lowest guard word */
 unsigned tk_size; /* stack size */
 stack tk_stack[1]; /* top of task's stack */
 };

A pointer to a task control structure is used as a process ID in this system. Task control
structures form a circular list, chained by the tk_next member of the structure. The scheduler is
a round robin scheduler; it simply loops through the circular list of tasks until it finds one which is
runnable (that is, a task whose ev_flg is TRUE) and then switches to that task. A context
switch merely consists of saving a small amount of state on the stack and calling the routine
tk_switch() (which is called by tk_block() more about which you'll read later). When the task
later runs again, it is by that call to tk_switch() returning.

When a task stack is allocated, it is filled with guardwords - a predefined constant used
to track stack usage. The tk_guard field points to the last (lowest on STK_TOPDOWN
systems) word on the stack. On every context switch, this word is checked to verify that it still
contains a guardword. If it doesn't, the tasking package assumes that the task had a stack
overflow and aborts the system with a call to the panic() routine. Guardwords are also used by
the tk_stats() function to determine how much of the stack has been used.

Finally, there is a global variable, tk_cur, which is a pointer to the task control structure
of the task which is currently running. For portability, it is recommended that you should only
access tk_cur via macros and not read or set its members directly.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 6

1.5 General Task Behavior

New tasks are created in a runnable state, and are not expected to return. Tasks which
have finished their job and wish to self-destruct should do so by calling tk_exit(). Generally,
task wakeups should be treated only as hints. When a task runs, it should try to discover why it
was woken up and do the right thing. This includes being able to cope with a seemingly
reasonless wakeup. Since tasks are forked as runnable, this is the suggested logic for a task
routine:

task_routine(
{
/* declare local variables; */
…

 /* initialize task resources */

 while(1)
 {
 /* see if there’s work to do */
 if(work_to_be_done)
 {

 /* do ongoing work */
 }
 tk_yield(); /* let rest of system run */
 }
}

There is a global variable called TDEBUG which is normally set to FALSE. When it is
TRUE, every time a task runs or blocks, a message is printed on the display saying what it did
and what the task’s name was. Of course, this makes it hard to see anything else which might be
going on, but it can be useful to see what task is crashing the program, or what task runs when,
and things of like nature.

1.6 Interrupts and Tasks

Interrupt handlers (ISRs) should never call any of the tasking functions other than
tk_wake(). In general the only interaction between ISRs and tasks should be the ISR setting or
clearing a task’s “runnable” flag via tk_wake().

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 7

2. TK_ MACRO DEFINITIONS

If a task using application will potentially be ported to other multitasking systems, then it
is obviously desirable to not to tie its design or source code directly to NicheTask’s (or any
other’s) multitasking API. All InterNiche network applications are written using a set of macros
which can be mapped to virtually any OS or RTOS. The macros, referred to for obvious
reasons as the TK_ macros, are described in this section.

Many of the TK_ macros map directly to NicheTask calls as well as calls from many
other popular embedded RTOS packages. Implementations are available from InterNiche upon
request. Contact your InterNiche distributor for an up to date list of supported RTOS systems.

In InterNiche’s networking code, the TK_ macros are generally defined in a file named
osport.h. Projects which support multiple RTOS will have either multiple osport.h files
available, or a single osport.h file with #ifdefs for the different systems. This osport.h file
should be included in any file which uses the TK_ macros. In InterNiche applications this is
usually done by including osport.h in ipport.h; which is ultimately included in nearly all
InterNiche source files.

 There are two classes of TK_ macros - those which map to a procedure call and those
which are used to declare an object. The object declarations are used so that task structures,
Ids, and entry points can be declared in a generic way and will not need to be redefined in the
source code when recompiling with a new RTOS. The object declarations are listed here, along
with their definition for NicheTask:

#define TK_ENTRY(name) int name(int parm) /* function declaration */
#define TK_ENTRY_PTR(name) int(*name)(int) /* pointer to function */
#define TK_OBJECT(name) task * name /* task object */
#define TK_OBJECT_PTR(name) task ** name /* pointer to object */

#define TK_OBJECT_REF TK_OBJECT
 - or -
#define TL_OBJECT_REF TK_OBJECT_PTR

Several InterNiche project directories use these macros to share a single “main” C files
across several operating systems. This file, named netmain.c, declares an array of structures,
each of which contains the required parameters to create one of the tasks needed in an
embedded networking system. The netmain.c files also contains a netmain() routine invoked
by system at startup. It uses a for loop to create a task for each entry defined in the array, it
then calls XXXXX() in XXXXX.c to create any application server tasks that have been
enabled through ipport.h. The individual task objects and task information structures are
defined in the application directories. The keyboard i/o task in tk_misc.c provides an example
of how this can be done. Since netmain.c is written using the TK_ macros, it can be compiled
and used with multiple operating systems.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 8

2.1 Portable Task Description Structure

The structure for the table with an entry for each Internet task/thread is named
inet_taskinfo. It is defined in osport.h, even though it is generally identical from port to port.
This allows the porting engineer to add fields if needed. Since the structure array is initialized in
netmain.c it should start with the same values in the same order in all ports.

The default for this is:

struct inet_taskinfo {
 TK_OBJECT_PTR(tk_ptr) /* pointer to static task object */
 char * name; /* name of task */
 TK_ENTRY_PTR(entry); /* pointer to code to start task at */
 int priority; /* priority of task */
 int stacksize; /* size (bytes) of task's stack */
};

All the members of this structure are declared with standard “C” types or TK_ macros
for portability. Not all fields are used on all tasking systems, for example the priority field is not
used on round robin schedulers like NicheTask. Even in these cases, the unused fields should be
left in place for portability.

2.2 TK_ Task Control Definitions

The TK_ macros which map to procedure calls fall into two sub-classes - those which
create & delete tasks, and those which transfer program control. In tasking systems which do
not support dynamic task creation and deletion, the create macros may simply finish
construction of task management objects or mark a task as runnable - they don’t necessarily
have to do the actual creation. The InterNiche networking software, including netmain.c, does
not delete tasks, so the delete macros may be simply #defined away.

The procedural TK_ macros are listed here and described in detail in the next section.
This example is for the NicheTask system. Some aspects of these definitions are explained
below.

int TK_NEWTASK(struct inet_taskinfo * nettask);

/* define TK_ macros to NichTask: */
#define TK_APP_BLOCK(event) tk_ev_block(event)
#define TK_APP_WAKE(event) tk_ev_wake(event)
#define TK_SLEEP(ticks) tk_sleep(ticks)
#define TK_NETRX_BLOCK() tk_ev_block(&rcvdq)
#define TK_CONS_BLOCK() tk_next()
#define TK_YIELD() { tk_wake(tk_cur); tk_block(); }
#define TK_WAKE() tk_wake()
#define TK_RETURN_ERROR() return (-1) /* task error return */
#define TK_RETURN_OK() parm++; return (0) /* task OK return */

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 9

In this case, TK_NEWTASK() is a function declaration and not a macro. This is
primarily a matter of style - it could be done either way. Since this is only called a few times,
and only at system initialization time, the readability and smaller code size of a routine was
chosen in this port over the faster execution time of a macro.

Another bit of code worth explaining is the “parm++;” in TK_RETURN_OK. To
understand this, review the example definition of TK_ENTRY(). It defines a routine with a
single passed parameter of type int. Since the TK_ENTRY macro is used in netmain.c to
define task’s entry points and the parameter is not used, a simple return(0) statement would
result in many C compilers generating a warning about an unused parameter. The netmain.c
tasks do not actually use the parameter since not all multitasking systems support a parameter.
By performing an increment operation on the parameter in the return macro, the compiler
warning is avoided.

2.3 Tasking System Designs - Spinning vs. Event-blocking

Before describing the TK_ macros in detail, it is worth explaining the underlying
assumptions about how they will be used. The main design goal of these macros is to support
InterNiche networking code on a wide variety of systems without any code modifications other
than the macro implementations themselves. As with any such system there are some simplicity
vs. performance trade-offs which warrant explaining.

The simplest task model used by the InterNiche networking code is one where each
task remains always ready to run. The tasks run for a reasonable period of time (as determined
by the porting programmer) or, more often, until there is no more work to be done. The task
then blocks, giving other tasks the opportunity to run in round-robin fashion. Each task has a
chance to run in the same fashion.

The advantage of this approach is simplicity - there are no decisions to be made about
how and when to suspend or wake up tasks. Each task essentially makes the decision for itself,
blocking briefly when there is no work and running when there is. The disadvantage is the
inefficiency of waking every task on every pass through the scheduler. This inefficiency is not as
bad as it sounds. The InterNiche networking tasks are written to quickly determine if they
should run or not, and return immediately if not. The C code when well optimized on a RISC
processor can do the call-test-return sequence in as little as three CPU instructions. This means
that this “infinite spinning” system is an excellent choice for most applications.

Some systems, however, require that the tasks not be runnable when there is no work
to be done. One potential reason for this is a battery powered device which wishes to be able
to shut down the CPU to save power, and only does so when all tasks are suspended. The
InterNiche networking code and the TK_ macros can work on such event based blocking
systems if the underlying tasking package is capable of supporting tasks which block pending an
event. NicheTask has this capability. Even RTOS packages which don’t directly support
blocking on an event can often be supported by creating additional layers of code to do this.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 10

The basic philosophy of InterNiche networking tasks is that each task services a queue
or linked list of structures, where each list item represents some aspect of the network activity
which may shortly require CPU cycles. The most common examples of these items are TCP
connections with received data in the socket structures, and network packets received from
hardware devices. When no such circumstance is pending, all tasks suspend themselves with the
TK_APP_BLOCK() or the TK_NETRX_BLOCK() macros, and the system can be powered
down until incoming network traffic (or a user command) wakes it up. In these cases the two
_BLOCK macros are expected to both be mapped to the same tasking system blocking call -
tk_ev_sleep() in the case of NicheTask.

2.4 Priorities

In tasking environments which support multiple priorities, the best philosophy is to
create all the network tasks at the same priority level and let them run round-robin style. Setting
them to different priorities creates the potential for a high priority task that ends up with a large
amount of input to lock out lower priority tasks and thus hurt system performance. Any
application needs the application’s task, the network task, the timer task, and the interrupt
system to all get reasonable amounts of CPU time or the overall performance of the application
will suffer.

It is also usually not required to run the network tasks at a high priority in a prioritized
system. The TCP/IP Networking protocols and their applications are designed to allow for
wide variances in event timing. Any event (such as a received packet) which is delayed or
dropped will be handled by the protocols. It is generally fine to save the high priority tasks for
whatever applications make up the systems primary function, and let the network catch up in the
systems spare cycles.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 11

3. THE TK MACROS

This section contains detailed descriptions of the TK_ macros. The syntax illustrated in
the synopsis section assumed the macro is treated like a function.

NAME

TK_NEWTASK()

SYNTAX

int TK_NEWTASK(struct inet_taskinfo * nettask);

DESCRIPTION

TK_NEWTASK() is called to create the actual task entity. This may include allocating a
task structure, a stack, or other resources for the task, and setting it up to run. Note that in
some tasking systems the task structures and stack memory are statically declared via
TK_OBJECT() and only need to be activated, while in others such as NicheTask the tasks are
allocated from heap. In this later case, the task’s identifier is an unassigned pointer to the task
which is filled in by TK_NEWTASK() before it returns.

The passed pointer is to an inet_taskinfo structure (described in the pervious section)
which contains information used to set up the task. Not all the information in this structure is
used by every port.

Tasks should be created ready to run, and may be started by the system at any time
after creation. Tasks should be coded to test for any required resources or conditions as they
start executing. An example of this is the netmain.c application tasks, which test the global
variable NET_READY before commencing network IO.

RETURNS

TK_NEWTASK should return a zero if the task was successfully created, and a
negative one (-1) if not. Specific error codes or task Ids which need to be returned can be
saved in port-specific fields added to the end of the passed structure.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 12

NAME

TK_APP_BLOCK()

SYNTAX

void TK_APP_BLOCK(void * event)

DESCRIPTION

This macro is called by an application when it has no more immediate work to do. The
passed event parameter is a pointer to a data object which may optionally be used to wake
the task when some event requiring the tasks attention occurs.

The porting engineer needs to decide before implementing this macro if the tasking
system will adhere to one of the tasking models described in the section, Tasking System
Designs - Spinning vs. Event-blocking on page 9, or do something else entirely.

In a “spinning” task system design, this macro may opt to ignore the passed flag and
simply relinquish the CPU to other tasks. In systems where different tasks have different
priorities, care should be taken to ensure that lower priority tasks get an opportunity to run. This
could mean actually putting the task to sleep for a brief interval.

In event based blocking systems this macro should record the passed pointer and block
the calling task until a call is made to TK_APP_WAKE() with the same event pointer.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 13

NAME

TK_APP_WAKE()

SYNTAX

void TK_APP_WAKE(void * event)

DESCRIPTION

This is called to awaken a task which has been blocked by a previous event blocking
call, such as TK_APP_BLOCK() or TK_NETRX_BLOCK(). Calling this is only required on
systems which use event blocking. Systems which use the infinitely spinning approach do not
strictly need to call this, although it is a good idea for portability reasons.

The address passed should be the same address that was passed to the _BLOCK call.
All tasks which have block on this address are set as runnable. On Some RTOS systems a
higher priority task which is asleep on the event passed to TK_APP_WAKE() may run before
TK_APP_WAKE() returns, so code should be designed to allow this.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 14

NAME

TK_SLEEP()

SYNTAX

void TK_SLEEP(long ticks)

DESCRIPTION

Calling this causes the calling task to suspend for the specified number of system clock
tick. On InterNiche networking systems clocks ticks are tracked by the variable cticks, and the
frequency is defined by TPS (ticks per second).

Tasks put to sleep with this call may be awakened before the indicated time by a call to
TK_WAKE(). They are not awakened by calls to TK_APP_WAKE().

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 15

NAME

TK_NETRX_BLOCK()

SYNTAX

void TK_NETRX_BLOCK(void * event)

DESCRIPTION

The call is semantically identical to TK_APP_BLOCK(). It is only called from the
InterNiche TCP/IP stack’s received packet handling task and should not be used by any other
code.

It is a separate macro because on some systems the received packet handler may be
implemented as a special case, getting a higher priority or faster wake-ups than the applications
which call TK_APP_BLOCK(). On systems with polled network devices (for example ring-
buffer Ethernet chips) this routine is a good place to do the device polling.

The event for this call is always the address of the received packet queue (rcvdq).

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 16

NAME

TK_CONS_BLOCK()

SYNTAX

void TK_CONS_BLOCK(void)

DESCRIPTION

This is another special-case blocking routine. In this case, it blocks waiting for character
input from the system console. When a character is ready to read, it should return. The calling
code should still verify that a character is ready before calling getch() (or whatever console
ready mechanism it uses) to avoid blocking inside the getch() function.

Blocking inside a Keyboard Reading routine is one of the most common mistakes in
implementing embedded multitasking packages.

On systems where the console input is marked by asynchronous events (e.g. interrupts),
this macro may be mapped to an event blocking routine. Other systems may need to poll a
keyboard flag or buffer state to determine when it is time to return to the calling task.

In general as with TK_NETRX_BLOCK(), this routine should not be called by tasks
other than the one it is tailored to, in this case the InterNiche port console handler.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 17

NAME

TK_OBJECT_REF

SYNTAX

#define TK_OBJECT_REF TK_OBJECT

OR

#define TK_OBJECT_REF TK_OBJECT_PTR

DESCRIPTION

This is a marco which is an indirection to either the TK_OBJECT or
TK_OBJECT_PTR macro’s that are used to declare an object. TK_OBJECT_REF declares
the task identifies in the tk_wait_event structure which is used to implement a version of
tcp_sleep() and tcp_wakeup(), which is portable across all RTOSs. Some RTOSs like PSOS
identify tasks with a long, or with an integer like in the case of uC-OS, however some other
RTOSs like ThreadX identify tasks with a pointer to a structure.

Hence this macro needs to setup to be either a TK_OBJECT or TK_OBJECT_PTR
whichever is the principal identifying method for the target RTOS.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 18

NAME

TK_THIS()

SYNTAX

TK_OBJECT_REF TK_THIS (void)

DESCRIPTION

This call is used in the tcp_sleep() and tcp_wakeup() implementation which is portable
across various RTOS’es. TK_THIS() is expected to identify a task in terms of the
TK_OBJECT_REF which is a generic identifier for the task as described earlier. On some
RTOS’es this macro maps directly while some others might need a wrapper around the call.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 19

NAME

TK_WAKE()

SYNTAX

void TK_WAKE(TK_OBJECT_PTR Id)

DESCRIPTION

This is called to awaken a task which has been blocked by a previous event blocking
call, such as TK_BLOCK() or TK_NETRX_BLOCK(). Calling this is only required on
systems which use event blocking. Systems which use the infinitely spinning approach do not
strictly need to call this, although it is a good idea for portability reasons.

The address passed should be the same address that was passed to the _BLOCK call.
All tasks which have block on this address are set as runnable. On Some RTOS systems a
higher priority task which is asleep on the event passed to TK_WAKE() may run before
TK_WAKE() returns, so code should be designed to allow this.

Note that this calls strictly expects a pointer to a task object as its argument.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 20

NAME

TK_WAKE_EVENT ()

SYNTAX

void TK_WAKE_EVENT(TK_OBJECT_REF event)

DESCRIPTION

This is called to awaken a task which has been blocked by a previous event blocking
call, such as TK_BLOCK() or TK_NETRX_BLOCK(). Calling this is only required on
systems which use event blocking. Systems which use the infinitely spinning approach do not
strictly need to call this, although it is a good idea for portability reasons.

The object reference passed should be the same object reference that was passed to
the _BLOCK call. All tasks which have block on this object reference are set as runnable. On
Some RTOS systems a higher priority task which is asleep on the event passed to
TK_WAKE_EVENT () may run before TK_WAKE_EVENT () returns, so code should be
designed to allow this.

Note that this call strictly expect the argument to be of type TK_OBJECT_REF (which
is again an indirection to TK_OBJECT or TK_OBJECT_PTR depending on the target RTOS).

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 21

NAME

TK_YIELD()
tk_yield()

SYNTAX

void TK_YIELD(void)

DESCRIPTION

TK_YIELD() is called when the task code wants to wait for something to occur - a
situation often referred to as a “busy wait”. The TK_YIELD() primitive must give other tasks a
chance to run, yet resume the calling task in a short interval. On a round-robin system like
NicheTask this is easy - you simply mark to current task as runnable an call the round-robin
scheduled.

On an RTOS where tasks have priorities, this can be somewhat trickier to implement.
These systems sometimes support a call which will let tasks of equal or greater priority run, by
not lower priority tasks. A task spinning on such a TK_YIELD() macro would never allow a
lower priority task to run.

One remedy for this is to code the TK_YIELD() macro to put the task to sleep for a
single clock tick. This will force it to wait a reasonable interval during which lower priority tasks
may potentially get some cycles. The draw back is that even when the system has nothing else
to do, the task spinning on will never be able to utilize all the CPUs power - it will always spend
a certain amount of time gratuitously blocked.

The tk_yield()macro (same name in lower case) is identical to the uppercase version. It
is supported for historical reasons.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 22

NAME

TK_RETURN_ERROR()
TK_RETURN_OK()

SYNTAX

void TK_RETURN_ERROR(void);
void TK_RETURN_OK(void);

DESCRIPTION

These macros are used in place of a return statement in task routines declared with
TK_ENTRY(). In most tasking systems a task should never return, however the return
statement is often required to avoid compiler warnings. Both error and non error varieties are
provided for completeness.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 23

4. USER TASKING FUNCTIONS

Descriptions of functions in the tasking system follow.

NAME

tk_new()

SYNTAX

task *tk_new(task *prev_task,
 int (*entry_point)(),
 unsigned stack_size,
 char *name,
 unsigned arg);

DESCRIPTION

This call creates a new task, setting up a task control structure and a stack for it. It
inserts it in the linked list of tasks directly after the task specified by prev_task. entry_point
is the pointer to the routine which implements this task. arg is the argument passed to
entry_point.

tk_new() builds a stack frame for this function by calling the lower level function
tk_frame(), so that the first time the task runs it can utilize its stack. It can store its state on the
stack, have local variables, and in general, do most things that any normally called C routine
could do, except that it must never return.

The stack_size parameter indicates the number of bytes of stack which tk_new()
should allocate. This stack is used by the tasks local variables, by functions called by the task,
and as the interrupt stack for any interrupts which occur while that task is running. 800 to 1000
bytes seem to be good minimum sizes.

This is an example of entry_point for a task which will print a message and then loop
forever, printing further messages. Tasks are set to runnable when created, so it does not need
to be awakened after it is created with tk_new().

task1_entry_point()
{

 printf("Hello world. \n");
 printf("task1: starting up. \n");

 while(1)
 {
 printf(“… still running…”);

 tk_yield()’
}

}

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 24

It is generally good form to enclose the main body of the task in a while or for loop.
Although tasks should never return, some compilers may also require a return statement at the
end of the function to suppress compiler warnings. Ironically, other compilers will warn that the
return statement, if present, is unreachable. The InterNiche TK_ macros define TK_RETURN
macros, so these compiler dependencies can be dealt with in a single include file rather than in
every task’s source.

Finally, the name parameter is a string which has a textual name for the task and is
sometimes useful for debugging.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 25

NAME

tk_init()

SYNTAX

task *tk_init(unsigned stack_size);

DESCRIPTION

This routine initializes the tasking system. It builds a task control structure for the
"currently running" task, gives it a name, main, and leaves it running on the system stack. It is
important to realize that the stack in use when tk_init() is called becomes the stack of the
created task - the task named main - and thus should not be returned to heap or otherwise
used later for any other purpose.

The purpose of this stack reuse feature is to conserve space on low-memory systems.
The compiler and/or bootstrap code often allocate a reasonably good sized stack, and there is
usually no reason why this stack cannot be used by a task during runtime. In cases where the
boot-up stack is not appropriate for task use, the OS port code should install a stack which is
suitable prior to calling tk_init().

The stack_size parameter should be the number of bytes available on the stack when
tk_init() is called. This function should be called before any other routine in the tasking system.

RETURNS

If successful, it returns a pointer to the task control structure that it built. If it fails (for
example it cannot allocate the task structure) it returns NULL.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 26

NAME

tk_ev_block()

SYNTAX

void tk_ev_block(void * event);

DESCRIPTION

The routine causes the calling task to suspend until another task calls tk_ev_wake()
with an identical event value. The event value is usually a pointer to a buffer or structure
which is controlled by the calling task. The task’s wake flag is cleared, and any previous event
the task was sleeping on is cleared.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 27

NAME

tk_ev_wake()

SYNTAX

void tk_ev_wake(void * event);

DESCRIPTION

This routine wakes any tasks which have been blocked by a previous call
tk_ev_block() with the same event value. All tasks blocked on the event are awakened. The
event is cleared in the awakened task’s structure, so future calls to tk_ev_wake() will NOT
awaken the task again unless they have made another call to tk_ev_block().

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 28

NAME

tk_block()

SYNTAX

void tk_block(void);

DESCRIPTION

tk_block() takes no arguments and returns no value. It blocks the currently running
task. Since the tasking system is non-preemptive, this is the only way for another task to gain
control of the processor. Other tasking system entry points which swap tasks do this by first
setting a wake condition and then calling tk_block(). This routine returns the next time the task
which blocked runs.

tk_block() contains the heart of the scheduler. It basically runs through the circular list
of tasks until it finds a runnable task and then does a context switch to that task, which then sees
its last call to tk_block() return. tk_block() calls tk_switch() to perform the actual context
switch.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 29

NAME

tk_exit()

SYNTAX

void tk_exit(void);

DESCRIPTION

This function causes the current task to die. When another task becomes runnable, this
task's task control structure and stack will be deallocated. This routine should not be called
from interrupt level and no further references should be made to this task's task control structure
after this call is made.

tk_exit() never returns.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 30

NAME

tk_wake()

SYNTAX

void tk_wake(task * tk);

DESCRIPTION

This routine is a macro or higher level routine implemented on tk_block(). It merely
sets the tasks event flag in the task control structure to which tk points to indicate that the
task should run. The next time the scheduler runs, this task will be considered runnable.

This routine can be called from interrupt handlers, and is the preferred mechanism by
which an ISR should initiate system processing. An example of a usage of this routine is by a
mac driver interrupt handler, which, when a good packet is received, enqueues the packet on
the received packet queue and wakes the task which handles received packets.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 31

NAME

tk_next()

SYNTAX

void tk_next(void);

DESCRIPTION

tk_next() performs a tk_wake(tk_cur) and a tk_block(). It essentially yields the
processor to let other tasks run, but wakes up the current task before yielding so that it regains
control of the processor after an unspecified amount of time.

Functionally identical to tk_yield(), except that it is always defined as a routine (not a
macro) for portability reasons. The TK_ macro TK_YIELD() may be implemented on
NicheTask by #defining it to tk_next(), or defined as a macro which directly calls the
tk_wake() and tk_block() functions.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 32

NAME

tk_kill()

SYNTAX

void tk_kill(task * tk);

DESCRIPTION

This function kills a task. The task is immediately removed from the list of tasks and its
stack is deallocated. Tasks should not call tk_kill with their own task pointer, they should use
tk_exit() instead.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 33

NAME

tk_sleep()

SYNTAX

void tk_sleep(unsigned long ticks);

DESCRIPTION

This function puts a task to sleep for the specified interval, given by the number of clock
ticks passed. The number of these ticks per second is given by the constant TPS, so if you
want to suspend a task for three seconds you could code the tick parameter as (3*TPS). The
code which determines the exact duration that the task will sleep has an accuracy of +/- one (1)
tick. Of course since the system is on-preemptive, another task “hogging” the CPU could cause
the task to sleep indefinitely.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 34

NAME

tk_stats()

SYNTAX

int tk_stats(void * io_dev);

DESCRIPTION

This macro prints statistics about all tasks in the list. It prints the name of each task, the
allocated stack size and the number of bytes of stack which have actually been used by the task.
The io_dev parameter is a system dependent descriptor for an output device to use, usually an
InterNiche “generic” IO device as implemented in \misclib\in_util.h. If the io_dev pointer is
NULL, the system should print the statistics to the default output device (if any).

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 35

5. LOW-LEVEL ROUTINES

The following functions are internal to the tasking system only and should not be called
from outside of it. These routines are generally not portable across processors (or sometimes
even assemblers), and as such need to be implemented for each target system. These are usually
written in machine (assembly) language.

NAME

tk_frame()

SYNTAX

tk_frame(task *tk, int (*entry)(), int arg);

DESCRIPTION

This routine builds the actual stack frame for a task. It builds the frame for the task
whose control structure is pointed to by tk. entry is the entry point of the task. arg is the value
passed to the routine when it runs for the first time. The task is not set to runnable by
tk_frame(); this must be done by the caller if desired.

This is called by tk_new().

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 36

NAME

tk_switch()

SYNTAX

tk_switch(task *tk);

DESCRIPTION

This routine performs the actual context switch to the task whose control block is
pointed to by tk. When the current task runs again, the call that was made to tk_switch() will
return.

This is called from inside tk_block().

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 37

NAME

tk_getsp()

SYNTAX

stack_t * tk_getsp(void);

DESCRIPTION

This returns the current stack pointer. It should just place the current stack pointer into a
return register as expected by the C compiler. The value of the system’s stack may change
when this call returns, but the calling code allows for this.

This is called from tk_init() to find the main task’s stack.

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 38

Index
A

arg, 23, 35
assembly language, 4, 35
asynchronous events, 16

B
BLOCK, 13, 19, 20
BLOCK macros, 10
bottom up stacks, 5
busy wait, 21

C
calloc(), 5
classes: TK_ macros, 7
clock ticks, 33
compiler: warnings, 22
console input, 16
context switch, 28, 36
control structure: task, 25
create: tasks, 8
creation: task, 8
cticks, 14

D
deallocate, 29, 32
debugging, 24
delete: tasks, 8
deletion: task, 8

E
embedded: RTOS, 7
embedded networking, 7
entry, 35
entry points: define, 9
entry_point, 23
Ethernet: ring-buffer, 15
ev_flg, 5
event, 12, 26
event flag, 30

F
for loop, 7, 24
free(), 5
function: declaration, 9
functions, 23; internal, 35

G
getch(), 16
global variable, 5
guardwords, 5

H
handler: received packet, 15

I
in_util.h, 34
increment operation, 9
inet_taskinfo, 8
infinite spinning, 9
initialize, 25
internal functions, 35
interrupt handlers, 6, 30

interrupts, 16
io_dev, 34
ipport.h, 4, 7
ISR, 6, 30

K
kill task, 32

L
low-memory systems, 25

M
mac driver, 30
macros: procedural, 8; TK, 4
main, 7, 25; task, 37
misclib, 4

N
name, 24
NET_READY, 11
netmain(), 7
netmain.c, 7, 8, 9, 11
NicheTask, 4
non-preemptive, 28

O
osport.h, 4, 7, 8
overflow: stack, 5

P
packet handler, 15
panic(), 5
portability, 8, 31
preemptive, 33
prev_task, 23
print: message, 23; statistics, 34
priorities, 10, 21
priority: field, 8
procedural: macros, 8
procedure calls, 8
process ID, 5
program control, 8
push, 5

R
rcvdq, 15
real time system, 4
reasonless wakeup, 6
received packet handler, 15
return: statement, 22
return(0), 9
ring-buffer Ethernet, 15
RISC, 9
round robin, 5
RTOS, 4, 9, 13, 19, 20, 21

S
semaphores, 4
stack: reuse, 25
stack frame, 35
stack overflow, 5
stack_size, 23, 25

stack_t, 5
statistics: print, 34
STK_ALLOC(), 5
STK_BOTTOMUP, 5
STK_TOPDOWN, 5
suggested logic, 6
suspend, 26
swap tasks, 28
system: tasking, 25; timer, 25
system stack, 25

T
task, 4; control structure, 25;

creation, 8; deletion, 8; kill,
32; swap, 28

task ID, 4
task.c, 4
task.h, 4
tasking system, 25
TDEBUG, 6
ticks, 33
timer system, 25
TK_ macro: classes, 7
TK_ macros, 4, 7
TK_ WAKE, 19
TK_ALLOC(), 5
TK_APP_BLOCK(), 10, 12, 13,

15, 19, 20
TK_APP_WAKE(), 12, 13, 14
tk_block(), 4, 5, 28, 30, 31, 36
TK_CONS_BLOCK(), 16
tk_cur, 5, 31
TK_ENTRY(), 9, 22
tk_ev_block(), 26, 27
tk_ev_sleep(), 10
tk_ev_wake(), 26, 27
tk_exit(), 6, 29, 32
tk_frame(), 23, 35
tk_getsp(), 37
tk_guard, 5
tk_init(), 25, 37
tk_kill(), 32
TK_NETRX_BLOCK(), 10, 13,

15, 16, 19, 20
tk_new(), 4, 23, 35
TK_NEWTASK(), 9, 11
tk_next, 5
tk_next(), 4, 31
TK_OBJECT(), 11
TK_OBJECT_REF, 17
TK_RETURN_OK, 9
tk_sleep(), 33
TK_SLEEP(), 14
tk_stats(), 5, 34
tk_switch(), 5, 28, 36
TK_THIS, 18
tk_wake(), 6, 30, 31

 NICHETASK TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 39

TK_WAKE(), 14
TK_WAKE_EVENT, 20
TK_YIELD, 21
tk_yield(), 21
TK_YIELD(), 21

tk_yield(),, 31
top down stacks, 5
TPS, 14, 33

V
variable: global, 5

W
wake: flag, 26
while loop, 24

