InterNiche Menuing System
APl Technical Reference

interniche

technologies, inc.

51 E Campbell Ave
Suite 160
Campbdl, CA. 95008

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://mww.iniche.com
support: 408.540.1160

fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information
contained in this documentation. We gppreciate any feedback you may have for improvements.
Please send your commentsto support@iniche.com.

The software described in this document is furnished under alicense and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

Table of Contents

1. INTRODUCTION ...c.utiutestestestestestessesseeseesseseessesbessessessesssesessessessessessessesssensensessessessessenes 4
2. SOFTWARE DESIGN....ciiiiitisiisiisiisieiesteste st st ste s eeseesse st st sbessessessesssesessestessessensens 5
21 INPUE & OULPUL ...t 5
2.2 IVLENUS ...t e e n e s e e e n e e mn e e ne e snn e e nneennneeneas 5
2.3 Format Of MENU ENIIES.....ccuviiiiieeeeces e 6
2.4 SOUNCE FIIBS ..t ettt nbenre s 8
3 PORT PROVIDED CALLS...c.utiutiieiesiesie st siesiesies s see st st sttt s s nse st sse s ssesne e 9
4 P 9
0= (o) RS 10
NS PIINEF() ettt e e e e n e 11
O A O TR TSP 12
(o[0T w'0 410101 T [IS 12
40T [T S 13
1S =L 1 1 10 OSSR 14
(ola g T o F=T = (TSRS TP 15
LS o OSSR 16

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 3

1. INTRODUCTION

The InterNiche Menuing System provides an extensible, portable command line
interface (“ CLI") for embedded systems. It is highly flexible, modular, and written an ANSI C.
It comes pre-integrated with most InterNiche source code products. This document is provided
for those users who want to add their own menus and commands to the Menuing System, or
even port it to an entirdy different environment than those where it's used by InterNiche.

The Menuing System is designed for maximum independence from hardware, assuming
only that an ASCII keyboard and character display is available. Since maintains 32 bit handles
for 10 devicesit can be used in avariety of environments. It has been used on serid terminds
(such as VT100), telnet sessions, HTTP sessions, and physical hardware (such asaraw PC
keyboard and screen). It can handle multiple concurrent users, and can be ported in afew
minutes to dmost any system which supportsgetchar() and sprintf().

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 4

2. SOFTWARE DESIGN

2.1 Input & Output

A keyboard input handler is provided which works via the common C library calls
kbhit() and getch(). Menu commands from other sources, such as telnet sessons and web
page CGlI scripts can be passed directly to the command parser do_commandy().
do_command() directsinput & output based on the “Generic 1O device’ (GEN_IO), asmdl
gtructure which contains an input buffer and output routine. Commands which generate text to
the output device can do so viacdlsto ns_printf(), which provides afunctiondity smilar to
fprintf() except that the output device defaults to the default 10 device (the console) if the
passed device handle is NULL. Example implementations of dl these routines are provided,
induding sprintf() and printf() routines for use in sysems whaose C libraries lack them.

To use the Menuing System from asingle smple console like keyboard & display
hardware or serid termina, only kbhit(), getch(), and printf() need to be provided. To
invoke the Menuing System from other modules (such astelnet servers and web page CGlI
engines), aGEN_|O gructure is created and passed to do_command(). do_command() will
process the text command in the GEN_IO input buffer and send the resulting text output to the
output routine pointed to by the structure.

2.2 Menus

Commands are added at the Menuing System by creating smple structures with
pointers to command text (what you want to cal the command), a calback routine (the routine
to execute when the command isinvokes), and some help text that describes the command.
One or more arrays of these structures are created by the programmer, and pointersto the
arrays are passed to install_menu(). These arrays of commands are referred to as menus.

Thefirg entry inthe aray MUST be an entry whose command text is used to determine
the name of the menu (for help system purposes), and the last entry MUST be NULL.

Hereisan example of asmal menu declaration:

struct menu_op netl86_menu[] =

{
"net186", stooges, "netl86 menu", /*menu ID */
"uart", uart_statO, "display data uart stats",
"usetting", u_setting, "display uart control struct",
"uinit", u_reinit, "(re)initize UART",
"baud", u_setbaud, "get/set modem UART's baud rate",
"telnum”, set_number, "showi/set telephone dial info",
"user”, set_username, "show/set dial-in user name",
"pass", set_password, "show/set dial-in password",
"heaps", mh_ stats, "heap (memory) usage statistics",
NULL, /*end of menu */

I

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 5

Once added viainstall_menu(), thearray will be searched for a match each timethe
end user enters acommand. Commands can be abbreviated, but the user must supply enough
text so that the command is unambiguous. Parameters to commands may be added after the
command text itself, separated by spaces.

Once the menu entry for the typed command has been found int the menus, the
cdlback routineis caled by the Menuing System. It is passed the GEN_IO structure which
contains the invoking commeand line and the output routine. For commands invoked viathe
keyboard, a GEN_10 structureis supplied by the Menuing System code.

Thereis no hierarchy to the menu commands— al commands are available to the user at
al times. Thisdso meansthat duplicate and context sengitive commands are not alowed. When
aprogrammer adds a menu care must be taken that all the commands are unique and are not
duplicates of the beginning of another command. This means adding a menu with the command
“dir” to asystem that dready has the command “direct” will result in “dir” being unreachable,
snceit’saduplicate of thefirg three letters of “direct”. “direct” may Hill be invoked by typing
itsfull name, or any sequence of its name's characters longer than “dir”.

The Help systemisinvoked by typing “?” or “help”. These two strings are considered
reserved commands by the Menuing System and their treatment ingde the system isidentical.
Jug typing “help” (or “?”) by itsdf will invoke the sysem’sinternd “magter” menu — the first
menu inddled in the sysem

In response to a“help” command, the main menu entries are displayed one per ling,
first the command string and then the help text. At the bottom on the main menu, the names of
the various other menus are displayed in alist separated by vertica bars. The user can display a
Help screen for the other menus by typing the name of the menu &fter “help”. For example, a
menu named diagnostics could be displayed by typing “help diagnostics”.

2.3 Format of Menu Entries

Each menuisjust an array of struct menu_op dements. The struct menu_op is
defined asfollows:

struct menu_op
{

char * opt; [* the option name */

int (*func)(void * pio); /* callback routine */

char * desc; [* description of the option */
%

The opt (option) and desc (description) fields are just smple C strings. opt isthefidd
which is matched to the user typed command, and desc isthe one line explanation printed by
the hdp system.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 6

The callback routine that implements the actud commeand must conform to the filling
prototype:

int (*func)(void * pio); * callback routine */

The returned integer should be 0 for success or a negative number for outright fallure.
These returned values are currently unused but may be used in afuture release.

Thepio parameter isapointer isaGEN_10 pointer. Itiscast asavoid * so that
application files and implement menu commeands without indluding thein_utils.h file, aslong as
they use no command line parameters and use ns_printf() for output. This alows most menu
commands to be written using pio asasmple 10 descriptor and not having to be aware of it's
internas.

For command routines that need to read the command line or input device (pio-
>getch), The structure pointer to by pio isasfollows

struct GenericlO

{

char * inbuf, /*Pointer to command line */

[* Function to send the output string */
int (* out)(long id, char * outbuf, int len);

* Identifier for the 10 device,, e.g. TCP SOCKET */
long id;

[* Get a character input from the I/O device This is needed to
* show scrollable items */
int (*getch)(long id);

typedef struct GenericlO * GEN_IO ;

Generdly the main use of knowing the format of the GEN_IO isto access the command
line which invoked the command to extract arguments. The following line of code will extract the
first argument in the command line:

char * cp = nextarg(((GEN_lO)pio)->inbuf);

Note: If no argument exigts, cp will POINT to aNull, ‘\O", character.
IT WILL NOT BE NULL.

Another interesting use of GEN_1O interndsis shownin con_page(), described in the
API Cdls section.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 7

2.4 SourceFiles

The following files contain the source code for the Menuing System:

menus.12c - Core code for managing menus
menu.h - Definitions for menu

In addition, these files contain definitions and routines which may be useful to the
Menuing System, indluding aworking implementation of ns_printf():

in_utils.c - InterNiche utility routines required by menus
in_utils.h - Definitionsfor GEN_10, €t. d.

Thesefilesare dl consdered “portablefiles’ by the InterNiche system. This meansyou
should NOT change them when they are part of alarger InterNiche software syslem. They
MAY be safdy edited when used in other systems, however thisis not usualy necessary.

Numerous examples of how to congtruct and code menu system code abound in the
InterNiche sources and can be located by grepping for the keyword “menu”. Perhaps the
largest exampleisthefile, misclib\nrmenus.c.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 8

3. PORT PROVIDED CALLS

When ported to a new environment, the Menuing System needs afew basic calsto
perform character 10. Providing these cdlsisdl that’s required to port to any environment.
Quite often the calls dready exist in some form on the target system.

NAME
kbhit()
SYNTAX
int kbhit(void);
DESCRIPTION

Determinesiif a character iswaiting to by returned viagetch(). Thisis used by the
system to make sure cals from getch() do not block the calling threed.

It' s vitdly important to the menu system’sinternd logic thet this call does not block. On
MS-DOS and Microsoft Windows compilers this function is provided as part of the standard C

library.
RETURNS

Returns TRUE (non-zero) if a character iswaiting to by returned viagetch() and
FALSE (0) if no character iswaiting.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential 9

NAME
getch()
SYNTAX
int getch(void);
DESCRIPTION

This returns the next unread character typed at the keyboard. Each keyboard character
is returned only once.

On gtandard C libraries this routine will block if no new keyboard character isready,
however snce the menu system aways polls for received characters with kbhit() this should
never happen in this context.

Genedly thegetch() primitive in the C compiler can be used by the menu system.
RETURNS

The ASCII value of the last keyboard character.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 10

NAME
ns_printf()
SYNTAX

void ns_printf(void * iodev, char * format, ...);

DESCRIPTION

Thisisfunctiondly the same as the standard C library fprintf(), except that the first
parameter does not have to be afile descriptor. It istreated as amore generic 1O descriptor.

If the 10 descriptor is NULL, the output device is the console, other wise the use of this
parameter isimplementation dependant.

In the InterNiche provided ns_printf() implementation, the 10 parameter is either
NULL (for standard console output), or a pointer to aGEN_IO dructure. The GEN_I1O
structure contains a pointer to an output routine which has a syntax smilar to the slandard ANS|
write() cal. Thiscdl can then be used to by thens_printf() code to send the formatted output
to the correct 10 stream, such as a socket or file.

This routine Generadly does not need to be re-written - the provided example works on
al InterNiche ports.

RETURNS

No meaningful vaueis returned.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 11

4. API CALLS

The cdlslisted in this section are those that are implemented in the InterNiche menu
system files. They are designed to be cdled from inside or outsde the Menuing System.

NAME

do_command()
SYNTAX

int do_command(void * pio);
DESCRIPTION

do_commandy() is caled when we have a complete command string and wish to have
the menu system search for the command and execute it. It is provided as a uniform way for
software modules other that the keyboard processor to pass command string into the Menuing
System. In InterNiche network systemsiit has been used by telnet servers and Web serversto
meake the menu commeands available via the network. The command text should be anull-
terminated string pointed to by pio->inbuf. do_command() looks up the command in the
menus and executes it. It prints error messages as appropriate.

The pio parameter passed must be apointer to afilled in GEN_IO structure, which if
defined in misclib\in_utils.h. An example gatic congtruction for such a structure is shown
here:

char cbuf[CBUFLEN]; /* command line buffer. */
extern int std_out(long s, char * buf, int len);

extern int std_in(long s);

extern long 10_Id; /* will be set to socket or file */

/* Generic |0 structure that do_command() will be called with */
struct GenericlO std_io = {cbuf, std_out, IO_Id, std_in };

Of course the structure may aso be alocated and filled in dynamicaly.
do_command() will not free any of the members (like cbuf). However, it will passthe pio
pointer to the menu command calback routine which may dter it.

For further information see the Input & Output section starting on page 5.
RETURNS

Returns 0 if the command passed was found in menus (or otherwise understood),
returns -1 if not.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 12

NAME
kbdio()
SYNTAX
void kbdio(void);
DESCRIPTION

Cadlled by the system whenever a console character isready. Calskbhit() to test, so it
can be used for palling. If an Enter, ASCIl return code (value) 13 or 10, isreceived, it cdls
do_command() with the currently buffered input characters.

Thismay be used by system code to poll the keyboard at regular intervals for received
characters, or only called when the system knows a keystroke has been entered. It contains
code 0 that it will NOT reenter a command parser, thus ensuring that all commands are
seridized.

This does not block itself, however the underlying commands that are called may block.
RETURNS

No meaningful vaueis returned.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 13

NAME

install_menu()
SYNTAX

int install_menu(struct menu_op * newmenu);
DESCRIPTION

Thisis caled by gpplication code to add new menu to magter list. The passed
parameter is apointer to an array of menu items. A discussion of how these arrays are
condructed and an illugtration is in the Menus section on page 5.

RETURNS

Returns 0 if OK, -1 if no more spare menu dots are available in the Menuing System.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidential

14

NAME
con_page()
SYNTAX
int con_page(void * pio, int lines);
DESCRIPTION

This routine can be used to implement a Smple paging mechanism <o that charts or data
dumps which are too large for asingle screen Sze can be “paused” in mid-display until the user
hits a character.

When a predetermined number of lines (currently 20 lines) from such alarge data dump
have been displayed, this routine blocks via the InterNiche tk_yield() macro until some input
arives on the pio->getch() routine.

If theinput isthe ESC, (escape) key a1 isreturned, alowing the caling routine to abort
the continued display.

This should not be used on systems that do not support thread suspension viaa macro
that conforms to the InterNiche TK_ macro, tk_yield().

Charactersin pio->inbuf are NOT considered input by this routine. The continuation
characters MUST come from the pio->getch() routine.

RETURNS

Returns 1 if we got a Bresk character, currently ESC(escape) key, 0 to keep printing.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 15

NAME
nextarg()
SYNTAX

char * nextarg(char * argp);
DESCRIPTION

nextarg() returns a pointer to next arg in string passed. Arguments (parameters) are
printable ASCII sequences of chars ddimited by spaces. If string ends without more args, then
apointer to the NULL terminating the string is returned.

Thisisussful for extracting multiple arguments separated by spacesin pio->inbuf
buffers passed to do_command() the menu command calback routines.

RETURNS

Returns a pointer to next arg in gtring or a pointer to NULL if no more args. Note that
this does not return aNULL when at the end of the arg gring.

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE
InterNiche Technologies Inc. Confidentia 16

| ndex

A
abort: display, 15
arg, 16
argp, 16
arguments, 16
B
break, 15
C
callback routine, 7
con_page(), 7, 15
cp, 7
D
desc, 6
do_command(), 5, 12, 13, 16
E
ESC, 15
escape, 15
F
fprintf(), 5, 11
G
GEN_, 12
GEN_I0Q, 5, 6, 7, 11; defined, 7
generic 1O device, 5
getch(), 5, 9, 10, 15

getchar(), 4

H
help: command, 6; screen, 6
help system, 5, 6
hierarchy: menu, 6
HTTP, 4

|
in_utils.c, 8
in_utilsh, 7,8, 12
inbuf, 12, 15
install_menu(), 5, 6, 14
10 device: generic, 5

K
kbdio(), 13
kbhit(), 5, 9, 10, 13

M
mastermenu, 6
menu: master, 6
menu hierarchy, 6
menu.h, 8
menu_op, 5, 6
menus.c, 8

N
nextarg(), 7, 16

nrmenus.c, 8
ns_printf(), 5, 7, 11
(6]
opt, 6
P
paging, 15
parameters, 16
pio, 7, 15
pio->getch(), 15
pio->inbuf, 12, 15, 16
printf(), 5
S
seria terminal, 4
sprintf(), 4, 5
struct menu_op, 6
T
telnet, 4, 12
TK_macro, 15
tk_yield(), 15
\Y
VT100, 4

W
write(), 11

INTERNICHE MENUING SYSTEM APl TECHNICAL REFERENCE

InterNiche Technologies Inc. Confidential

17

