

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 1

PORTABLE TELNET SERVER
TECHNICAL REFERENCE

51 E Campbell Ave

Suite 160
Campbell, CA. 95008

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 2

Copyright © 1998-2005
InterNiche Technologies Inc.
email: support@iniche.com
http://www.iniche.com
support: 408.540.1160
fax: 408.540.1161

InterNiche Technologies Inc. has made every effort to assure the accuracy of the
information contained in this documentation. We appreciate any feedback you may have
for improvements. Please send your comments to support@iniche.com.

The software described in this document is furnished under a license and may be used, or
copied, only in accordance with the terms of such license.

Rev-10.2005

Portions of the InterNiche source code are provided under the copyright of the respective
owners and are also acknowledged in the appropriate source files:

Copyright © 1984, 1985, 1986 by the Massachusetts Institute of Technology

Copyright © 1982, 1985, 1986 by the Regents of the University of California.
All Rights Reserved

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the University
of California, Berkeley. The name of the University may not be used to endorse or promote products derived
from this software without specific prior written permission.

Copyright © 1988, 1989 by Carnegie Mellon University
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of CMU
not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

Trademarks
All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or
registered trademarks are property of their respective holders and have been appropriately capitalized.
InterNiche Technologies Inc. cannot attest to the complete accuracy of this information. The use of a term in
this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or
registered trademark.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 3

TABLE OF CONTENTS
1. OVERVIEW --- 5

1.1 Terms and Conventions -- 5
1.2 What Is a Telnet? -- 5

1.2.1 Introduction --- 5
1.2.2 General Considerations --- 6

1.3 What Is a Telnet Server? -- 6
1.4 What Is a Port? --- 6
1.5 Requirements-- 7

1.5.1 Memory Requirements-- 7
1.5.2 Operating System Requirements-- 7

1.6 Telnet Source Directories List-- 8
2. STEP BY STEP PORTING GUIDE --- 9

2.1 Overview of Porting the Telnet Server--- 9
2.1.1 Coding Conventions -- 9

2.2 Source Files List-- 9
2.3 Telnet Entry Points ---10
2.4 Description of Porting Issues - telport.h and telport.c------------------------------10

2.4.1 Standard Macros and Definitions -- 10
2.4.2 Memory Allocation -- 11
2.4.3 CPU Architecture -- 11
2.4.4 Debugging Aids -- 12
2.4.5 Features and Options --- 13
2.4.6 Transport (TCP) Layer--- 13
2.4.7 Timers and Multitasking --- 14

2.5 Telnet Static Data Requirements - NVRAM Parameters --------------------------14
2.6 Interface Provided by Telnet Server---14
2.7 Setting Telnet Options ---15
2.8 Doing Telnet Sub-Negotiation (Expanded Negotiation) ----------------------------15
2.9 Telnet User Authentication---16
2.10 Input Routine for GenericIO Structure ---16
2.11 Testing --16
2.12 Telnet User Menu--16

tshow - Shows OPTION values for all Telnet sessions----------------------------- 16
tstats - Shows the statistics for all Telnet sessions --------------------------------- 16
logout - Logout from the Telnet session -- 16
exit - Logout from the Telnet session --- 16

3. GENERIC INPUT-OUTPUT MECHANISM USED BY TELNET --------------------------------17
3.1 How Does It Work? --17
3.2 What Does the Calling Routine Do?---17
3.3 What Does the Called Routine Do? --17
3.4 What Does ns_printf Do? ---17
3.5 GenericIO Structure ---18

4. PORTING RELATED FUNCTIONS ---19
4.1 General Functions --19

dtrap() --- 19
dprintf()-- 20
info_printf() --- 20

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 4

4.2 Telnet Server Entry Points ---21
tel_init() --- 21
tel_check()--- 22
tel_cleanup()--- 23

4.3 Telnet User Authentication---24
TEL_ADD_USER()--- 24
TEL_CHECK_PERMIT() -- 25

4.4 Telnet Timing Routines ---26
tel_start_timer() --- 26
tel_check_timeout() --- 26

4.5 Functions Supporting Use of GenericIO Structure ---------------------------------27
ns_printf() --- 27
con_page()--- 28
tel_tcp_send() --- 29
tel_tcp_recv()-- 30

APPENDIX A: USING THE WINDOWS DEMO - WTEL --31

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 5

1. OVERVIEW
This Technical reference is provided with InterNiche’s Telnet Server software .

The purpose of this document is to provide enough information so that a moderately
experienced “C” programmer with a reasonable understanding of TCP/IP protocols can
port the InterNiche’s Telnet Server software to a new environment.
If the Telnet code was delivered as part of an InterNiche TCP/IP stack, there is little or
nothing to do - the Telnet layers were compiled, linked and tested with the IP stack. This
manual is intended primarily as an aid to programmers porting InterNiche’s Telnet Server
software.

1.1 Terms and Conventions

In this document, the term “stack”, when used without other qualification, means
the TCP/IP and related code as ported to an embedded system. “System” refers to your
embedded system. “Sockets” refers to the TCP API developed for UNIX at U.C.
Berkeley. A “porting engineer” refers to the engineer who is porting the Telnet code. An
“end user” refers to the person who ultimately ends up using the engineer’s product.
“FCS” is an acronym for “First Customer Ship”, the point in the software development
cycle when the product is declared ready to ship. A “packet” is sequence of bytes sent on
network hardware, also known as a “frame” or a datagram”.

Names of files, C structures and C routines are displayed as follows: c_routine().

Small samples of source code from C programs is displayed in these boxes:

/* C source file - the world’s 1 millionth hello program. */
main()
{
 printf(“hello world.\n”);
}

1.2 What Is a Telnet?

1.2.1 Introduction

Telnet is a protocol based on a TCP (Transmission Control Protocol) connection.
It is used to transmit data with interspersed Telnet control information. Telnet protocol
specification can be found in RFC0854.

The purpose of Telnet protocol is to provide a fairly general, bi-directional, eight-
bit byte oriented communications facility. Its primary goal is to allow a standard method
of interfacing terminal devices and terminal-oriented processes to each other. It is
envisioned that the protocol may also be used for terminal-terminal communications (
“linking”) and process-process communication (distributed computing).

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 6

1.2.2 General Considerations

The Telnet protocol is built upon three main ideas: first, the concept of “Network
Virtual Terminal”; second, the principle of negotiated options; and third, a symmetric
view of terminals and processes.

When a Telnet connection is first established, each end is assumed to originate
and terminate at a “Network Virtual Terminal”, or NVT. An NVT is an imaginary device
which provides a standard, network-wide, intermediate representation of a canonical
terminal. This eliminates the need for “server” and “user” hosts to keep information about
the characteristics of each other’s terminals and terminal handling conventions.

The principle of negotiated options takes cognizance of the fact that many hosts
will wish to provide additional services over and above those available within an NVT.
Independent of, but structured within the Telnet protocol are various “options” that will
be sanctioned and may be used to allow a user and server to agree to use a more elaborate
set of conventions for their Telnet connection.

The symmetry of the negotiation syntax can potentially lead to non-terminating
acknowledgment loops. Telnet standard has certain rules to avoid such loops.

1.3 What Is a Telnet Server?

A Telnet server is:“A device that implements Telnet protocol to provide certain
services.” For example InterNiche’s Telnet Server provides the services of its menu
interface. We are already familiar with UNIX machines using a Telnet Server (also called
as Telnet daemon) to provide the user- level access.

A Telnet Client can make a connection with the Telnet Server to use its services.
For example, a Windows 95 Telnet Client could be used to access the menu interface of a
device running the InterNiche’s Telnet Server.

1.4 What Is a Port?

In the world of portable networking code, the code designer does not know what
tasking system, user applications, or interfaces will be supported in the target system. So
a “portable” stack is one that’s designed with simple, generic interfaces in these areas,
and a “glue” layer is created which maps this generic interface into the specific interfaces
available on the target system. Using the example of sending a packet, the stack would be
designed with a generic send_packet() call, and to porting engineer would code a “glue”
routine to send the packet on the target system’s network interface hardware.

Making a stack portable involves minimizing the number of calls which have go
across glue routines, and keeping the glue routines simple and therefore easy to
implement. The glue routines also need to be well documented. The interfaces to the
InterNiche stack have evolved through years of porting to a variety of processors,
network media, and tasking systems. Wherever possible we have used standard interfaces
(e.g. Sockets, ANSI C library) or included glue routines to illustrate their use.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 7

The bulk of the work in porting a stack is understanding and implementing these
glue routines. The InterNiche Telnet has two kinds of glue routines: the first kind is used
to interface to the TCP/IP layer, and the second kind to manage the Telnet databases (
user information, etc.).

1.5 Requirements

Before beginning a port, the porting engineer should ensure that the necessary
resources are available in the target environment. Here is a brief summary of services
InterNiche Telnet needs from the system:

• A timer which ticks at least once a second.
• A non-volatile read/write method for storing database items (e.g. disk or flash memory)

(optional)
• Memory as described in Memory Requirements
• And of course, a TCP/IP stack

1.5.1 Memory Requirements

There is no easy way to determine the exact memory sizes required, however a
rough idea can be obtained by examining the map file. The figures given below reflect
the code size (they don’t include size of data segment). This program is compiled with
Microsoft C 8.0, using default optimization options, with debugging turned off. (Figures
are subject to change without notice and are current as of 11/21/00).

Bytes Description Related Options
7432 Basic Telnet Server TELNET_SVR

92 Support for description of error messages TEL_SHOW_MSG

928 Support for menus TEL_MENU

544 Support for user authentication TEL_USERAUTH

8952 Telnet with all features enabled

1.5.2 Operating System Requirements

The Telnet Server also requires a few basic services from the Operating System.
These are listed here:

clock tick - tel_check() needs to be called every time tick to process input from
ongoing Telnet sessions.

memory access - Telnet obtains dynamic memory by calls to the primitives
TEL_ALLOC() and TEL_FREE(). These can be mapped directly to the
standard calloc() and free() library calls or they can be mapped to a
“partition” based system with very little effort.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 8

1.6 Telnet Source Directories List

When distributed without InterNiche IP, the sources for Telnet are typically sent
in a DOS “zip” file, telsrc.zip. This file should be unzipped with pkunzip (or compatible
utility) in such a way as to preserve the underlying directory structure. It contains the
sources for the Telnet Server code.

On DOS, the command to unpack the code is:

c:> pkunzip -d TELSRC.zip

pkunzip should create the following sub-directories:

telnet InterNiche’s Telnet Server
Source code

Creates a directory named \telnet in your
source tree and copies all files there

misclib InterNiche’s sample code for
menu interface, NVRAM , generic
I/O, user authentication, etc.

Creates a directory named \misclib in
your source tree and copies all files there

You can also request a Windows Telnet demo application from InterNiche Sales
or Support. This includes the sources and makefiles for a Windows 95/NT application
which serves as both a Telnet demonstration and test tool.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 9

2. STEP BY STEP PORTING GUIDE

2.1 Overview of Porting the Telnet Server

This section describes the steps needed to port the InterNiche’s Telnet Server to a
new environment. The discussions below generally assume that the stack is being ported
to a small or embedded system with a sockets API interface and that a minimal ANSI C
library is available.

The recommended steps to getting the server working on your target system are as
follows:

1. Copy the portable source files into your development environment.
2. Provide hooks for the Telnet Server entry point routines (tel_init, tel_cleanup, and

tel_check)
3. Create your version of telport.h and telport.c and compile.
4. Provide your own welcome message and user authentication.
5. Implement your own tel_exec_cmd to process the received command.
6. Provide the options that you want to support. This includes the negotiation and sub-

negotiation commands.

2.1.1 Coding Conventions

The following conventions are followed in the Telnet source code:

• Boolean variables have the values TRUE or FALSE. Explicit matching should be done
in expressions (for example if (opt->l_value == TRUE)).

• Functions return a value of SUCCESS or error number, thus to do error checking the
result of a function call should be explicitly compared with SUCCESS (for example, if
(tel_parse(fhost) != SUCCESS)).

2.2 Source Files List

Before beginning step one, you should be aware of which files in the InterNiche’s
Telnet distribution are the portable files, and which are not. The portable files are those
which should be compiled and used on any target system without modification. The
unportable, or “port dependent” files, are those which will need to be replaced or heavily
modified for different target systems. The following is a list of Telnet source files which
should NOT need to be modified in the course of a normal port. If you feel you need to
modify one of these files in the course of a routine port, please discuss it with
InterNiche’s technical support staff first, so we can either suggest an alternative, or
modify our sources to reflect the change.

The portable Telnet source files. These should not be modified.

telnet.c
telparse.c
telmenu.c
telerr.c
telnet.h

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 10

The port-dependent files are:
telport.c
telport.h

2.3 Telnet Entry Points

There are three routines which are entry points to the Telnet implementation.

tel_init() - Should be called after the TCP/IP layer has been initialized.
tel_check() - Should be called on every time-tick.
tel_cleanup() - Should be called when the system is being shut down.

If TELNET_SRV is defined, then all the Telnet sources get included in the build.
So to include the Telnet Server, TELNET_SRV should be defined in the main header file
(or in an appropriate header file).

2.4 Description of Porting Issues - telport.h and telport.c

The description in this section affect the files telport.h and telport.c.

These files contain most of the port dependent definitions in the stack. CPU
architectures (big vs. little endian), compiler idiosyncrasies, and optional features (for
example, TEL_SHOW_MSG) are controlled in this file. A single mistake in these files
(such as getting big & little endian confused) will guarantee that your port won’t work
properly. Taking a few hours up front to implement the file line by line is time well spent.

2.4.1 Standard Macros and Definitions

The InterNiche Telnet source expects TRUE, FALSE, and NULL to be defined
within the scope of telport.h. The best way to do this is usually to include the standard C
library file stdio.h inside telport.h. If stdio.h is impractical to use or missing, the
examples below will work for almost every C environment:

#ifndef TRUE
#define TRUE -1
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0;
#endif

Telnet also uses SUCCESS and FAILURE. If these are not defined elsewhere in
your system, they can be defined as follows:

#define SUCCESS 0
#define FAILURE 1

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 11

2.4.2 Memory Allocation

The Telnet code allocates and frees memory blocks dynamically as it runs. It uses
the macros listed below to do this. If your target system supports standard C calloc() and
free(), the macros map directly as follows:

#define TEL_ALLOC(size) calloc(1,size)
#define TEL_FREE(ptr) free(ptr)

Many RTOS systems do not use calloc() due to performance issues. Generally,
they use a system which supports allocations of fixed size “partitions” (blocks) instead.
The macros above are designed to support this - the TEL_ALLOC() can be mapped to a
call to allocate the next largest partition size.

2.4.3 CPU Architecture

Four common macros are used from Berkeley UNIX for doing byte order
conversions between the representation used in a particular CPU and the CPU
independent “network” order. These are htons(), htonl(), ntohs() and ntohl(). They may
be either macros or functions. They accept 16 & 32 bit quantities as shown and convert
them between network format (“big-endian”) and the local CPU's format. Most “big-
endian” processors, such as Motorola 68K, PowerPC and ARM can just return the
variable passed, as in this example:

#define htonl(long_var) (long_var)
#define htons(short_var) (short_var)
#define ntohl(long_var) (long_var)
#define ntohs(short_var) (short_var)

The Intel 8086 and its descendants require the byte order in the word or long to be
swapped. The standard InterNiche stack source code distribution which works for Intel
processors implements htons() and ntohs() as macros, whereas htonl() and ntohl() are
implemented a function calls to the assembly language function lswap(), the
implementation of which is contained in the file cksum1.asm.

#define htonl(long_var) lswap(long_var)
#define ntohl(long_var) lswap(long_var)
#define htons(short_var) (((u_short)(s) >> 8) | ((u_short)(s) << 8))
#define ntohs(short_var) htons(short_var)

Depending on your C compiler, it may be more efficient to define inline C macros
or inline assembly language implementations of these macros.

#define LITTLE_ENDIAN 1234
#define BIG_ENDIAN 4321
#define BYTE_ORDER LITTLE_ENDIAN

In addition to the byte order conversion functions described above, it is necessary
to set the value of the defined constant BYTE_ORDER to either LITTLE_ENDIAN or
BIG_ENDIAN in order to indicate the byte ordering of the target system processor.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 12

#define ALIGN_TYPE 2 /* 16 bit alignment */

Some processors will access memory more efficiently if the addresses of the
addressed data are evenly divisible by 2 or 4. If the target system processor is of this
variety, set the defined constant ALIGN_TYPE to either 2 or 4, respectively.
ALIGN_TYPE effects the memory alignment of allocated packet buffers.

2.4.4 Debugging Aids

dtrap() is a macro called by the Telnet code whenever it detects a situation which
should not be occurring. The intention is for the dtrap() routine or macro to try to trap to
whatever debugger may be in use by the programmer. Think of it as an embedded break
point. For most Intel x86 processor debuggers, this can be done with an int 3 opcode. The
macro below is effective if your Intel C compiler accepts inline assembly:

#define dtrap(); _asm{ int 3 }

You may need to experiment with the exact syntax to get it to compile. The stack
code will generally continue executing after a dtrap(), but the dtrap() usually indicates
that something is wrong with the port. NO PRODUCT BASED ON THIS CODE
SHOULD BE SHIPPED UNTIL THE CAUSES OF ALL CALLS TO dtrap()
HAVE BEEN ELIMINATED! When it comes time to ship code, the dtrap()s can be
redefined to a null function to slightly reduce code size.

The next few primitives have the same function and syntax as printf(). They have
separate names so that they can have their output redirected or be completely disabled
independently of each other. The first dprintf(), is used throughout the stack code to print
warning messages when something seems to be wrong. This should be mapped to a
debugging console or log during deve lopment, and generally ifdefed away for FCS.
These will certainly be useful during product development, and depending on the nature
of the product may be needed in the end user’s release. The info_printf() is for printing
informationa l messages, like arrival of a packet, change of metric for a route, etc.

In most ports, these can both be mapped to printf() as shown while the product is
under development. Note: This example works on Microsoft C, but some compilers will
complain about this syntax since it ignores the fact that these names have parameters.
You may have to experiment.

#define info_printf printf /* same parms as printf, */
#define dprintf printf /* same parms as printf, but works during run time */

For some products, it may make sense to define these away before FCS as
follows:

#define info_printf /* define to nothing */
#define dprintf /* define to nothing */

The last debugging tool in telport.h is the #define NPDEBUG. Defining this will
cause the debug code to be compiled into the build. This code does things like check for
valid parameters and sensible configurations during runtime. It frequently invokes
dtrap() or dprintf() to inform the programmer of detected problems. You will want make

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 13

sure it is defined during development. Unless PROM space is tight, it is OK to leave it
defined for FCS - there will be no noticeable performance hit from this code.

#define NPDEBUG 1 /* enable debug checks */

2.4.5 Features and Options

Following is a description of all the #define options available for Telnet. The
most important being TEL_INICHE_IP, which decides whether InterNiche’s TCP/IP stack
is used or not. If TEL_INICHE_IP is disabled, then the porting issues mentioned in this
section need to resolved.

TELNET_SRV - Controls the inclusion of all Telnet sources in the build. It
should be defined at an appropriate place (for example, in the
main header file).

TEL_INICHE_IP - Use InterNiche’s TCP/IP stack.
TEL_SHOW_MSG - Show description for error messages and Telnet negotiation

options.
TEL_SESS_TIMEOUT - If defined the Telnet Server will close a Telnet session if

there has not been any activity for TEL_IDLE_TIME seconds.
TEL_MENU - Enable the menu commands. The default implementation

provides use of menu commands on InterNiche's command
prompt. It is done in tel_menu_init(). If menus are to be used
with some other architecture, then customization can be done
in tel_menu_init().

TEL_USERAUTH - Support for user authentication (login, password).

2.4.6 Transport (TCP) Layer

The supplied Telnet includes code to interface with InterNiche’s standard sockets
or Microsoft WinSock. You need to map the routines listed below if you have another
TCP/IP stack.

sys_closesocket()
sys_send()
sys_recv()
sys_error()
sys_accept()
sys_socket()
sys_bind()
sys_listen()

For example, mappings for InterNiche’s TCP/IP stack are as follows

#define sys_closesocket t_socketclose
#define sys_send t_send
#define sys_recv t_recv
#define sys_errno t_errno
#define sys_accept(X,Y,Z) t_accept(X,Y)
#define sys_bind(X,Y,Z) t_bind(X,Y)
#define sys_socket(X,Y,Z) t_socket(X,Y,Z)
#define sys_listen t_listen
#define SYS_EWOULDBLOCK EWOULDBLOCK

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 14

For WinSock, we have the following mappings

int sys_send(SOCKET s, char FAR * buf, int len, int flags);
int sys_closesocket(SOCKET s);
#define sys_errno(X) WSAGetLastError()
#define sys_accep accept
#define sys_recv recv
#define sys_bind bind
#define sys_socket socket
#define sys_listen listen
#define SYS_EWOULDBLOCK WSAEWOULDBLOCK

SYS_EWOULDBLOCK is the error code returned by functions to inform that they
are blocked (for example sys_recv() would return SYS_EWOULDBLOCK to inform that
it is waiting for some input).

In tel_init(), the listen socket is set to non-blocking mode. setsockopt() or
equivalent call must be made to do so by the porting engineer.

2.4.7 Timers and Multitasking

The following functions use the Operating System specific calls for time-ticks.
Again, they work for InterNiche’s TCP/IP stack and WinSock. They should be modified
if you are using any other TCP/IP stack.

tel_start_timer()
tel_check_timeout()

2.5 Telnet Static Data Requirements - NVRAM Parameters

As of this release, the Telnet Server does not have any such requirements.

2.6 Interface Provided by Telnet Server

When a Telnet session gets established, the Telnet Server should provide an
interface through which the client can communicate. Telnet Server with InterNiche
TCP/IP extends the console menu commands to Telnet. So the Telnet Client will get a
prompt and he can type in and execute certain commands.

First look at how the Telnet Server works with InterNiche TCP/IP. This helps
illustrate what should be done when porting it to other systems. Consider the following
scenario:

1. When a new Telnet session is opened, the Telnet Server sends a welcome message and
a prompt.

2. It processes characters from the client until a command has been entered (that is the
when the user presses the <Enter> key).

3. It then calls tel_exec_cmd() to execute the command. For InterNiche’s TCP/IP,
tel_exec_cmd() maps to do_command().

4. do_command() compares the input with its set of commands. If a match occurs, it
calls the corresponding function. Otherwise it notifies that the command is not
understood.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 15

At the heart of this mechanism is the GenericIO structure. One such structure is
used for each Telnet session. Here is how the information flows:

1. Telnet Client completes typing a command.
2. Telnet Server, when processing the corresponding session, finds that a complete

command has been entered. So it calls do_command() with a pointer to the
GenericIO structure for this session.

3. do_command() calls the appropriate function (example: tel_show_stats) with the
GenericIO pointer

4. Using the GenericIO structure, tel_show_stats() sends all its output to the Telnet
Client.

To provide an alternate menu interface via the Telnet Server, the following
changes would be required:

1. tel_exec_cmd() should be mapped to a function which processes menu commands.
2. All the functions hooked to menu should use the GenericIO structure in combination

with ns_printf() to output to the Telnet Client.

2.7 Setting Telnet Options

When a new Telnet connection is established, the Telnet Server negotiates for
certain options with the Telnet Client. InterNiche’s Telnet Server comes with few of them
like echo and suppress Go Ahead. To support a new option, the following needs to be
done.

1. For example if you want to enter support for status option: Add an extra member to
the structure TelOptionList (end of list). Namely struct TelnetOption status.

2. Add the default values for this option to global array tel_opt_list.
The following things will now happen automatically.
3. When a new Telnet session is established, it starts with default values of all the

options. It negotiates the options and the values are set appropriately.
4. If during a Telnet session, the Telnet Client renegotiates an option, then the values of

that option are properly updated.

Using the above, you can implement the processing related to this option.

2.8 Doing Telnet Sub-Negotiation (Expanded Negotiation)

If some particular option requires a richer negotiation structure, it can do sub-
negotiation. InterNiche’s Telnet Server provides an entry point for such needs. So if sub-
negotiation is desired for an option, then the changes can be done in tel_proc_subcmd().

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 16

2.9 Telnet User Authentication

InterNiche’s Telnet Server provides the option of user authentication. It works as
follows:

1. TEL_ADD_USER() call is made in tel_init() to prepare a list of allowed users.
2. When a new Telnet session is initiated, the user is asked for login and password.
3. After the user has entered the login and password, TEL_CHECK_PERMIT() is used

to verify them. If they are correct, then a normal Telnet session is started. If they are
incorrect, then the user is asked to enter the login and password again.

4. Telnet Server allows TEL_MAX_LOGIN_TRIES (5 by default) tries. After
TEL_MAX_LOGIN_TRIES, the Telnet connection is closed.

For InterNiche’s stack, TEL_ADD_USER() and TEL_CHECK_PERMIT() map to
add_user() and check_permit() functions (implemented in the userpass.c file in
\misclib directory). If some other implementation for user authentication is used, then
functions similar to TEL_ADD_USER() and TEL_CHECK_PERMIT() should be
provided.

2.10 Input Routine for GenericIO Structure

Telnet uses the GenericIO structure for input-output. The input routine used for
this is tel_tcp_recv(), which blocks until it receives a character from the Telnet session.
Implementation using InterNiche’s TCP/IP stack calls a function tk_yield() to do other
routine processing, so that processing for other sessions (Telnet, FTP, etc.) doesn’t get
affected. To port this, an alternative implementation is required which is specific to the
target OS.

2.11 Testing

Once your telport.h file is set up and your glue layers are coded, compiled, and
linked, you are ready to test your Telnet Server. Windows 95 and most UNIX systems
come with a Telnet Client. telnet <ip addr of server> should get you started.

2.12 Telnet User Menu

The Telnet Server comes with portable C code to implement a few simple
diagnostic commands on a command line interface. The commands can be invaluable
both during debugging of the server and to the end user during configuration and runtime.
If you do not implement these menu commands as provided, we strongly suggest that
some alternative method (i.e. a GUI) be provided to the end user for accessing the same
data.

The menu commands are summarized below:

tshow - Shows OPTION values for all Telnet sessions
tstats - Shows the statistics for all Telnet sessions
logout - Logout from the Telnet session
exit - Logout from the Telnet session

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 17

3. GENERIC INPUT-OUTPUT MECHANISM USED BY TELNET

3.1 How Does It Work?

InterNiche’s Telnet Server uses the GenericIO structure to provide a generic
input-output mechanism. Using this structure, general purpose routines can be used for
input and output. For example, ns_printf() can be used to send data to an output device,
con_page() can be used to display data one page at a time.
So, we have a calling routine, which populates the GenericIO structure and passes it as a
reference(pointer) to the called routine. An example of a calling routine is a particular
Telnet session.

3.2 What Does the Calling Routine Do?

Let us assume that the calling routine is X() and the called routine is Y(). Now X()
calls Y(). Y() expects to know the input (command line), and Y() will have certain output.
Hence X() will pass a pointer to GenericIO structure to Y() which contains the following
information.

1. Pointer to input buffer
2. Pointer to output function (used to send output to some device/network)
3. An identifier representing a socket, file or anything else
4. Pointer to input function (to input a character)

3.3 What Does the Called Routine Do?

1. If input processing is required, it picks the input buffer from the structure and
processes it

2. For output, it calls ns_printf() with a pointer to the GenericIO structure
3. While displaying output, if prompting from the input device is required, it calls the

input function in GenericIO

3.4 What Does ns_printf Do?

1. Allocates a buffer to hold the output string
2. Forms the output string using sprintf() (or equivalent)
3. Uses the function in GenericIO structure to output this string
4. Frees the memory allocated to hold the string

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 18

3.5 GenericIO Structure

struct GenericIO
{

char * inbuf; /* Pointer to command line */
int (* out)(long id,char *outbuf,int len);

/* Function to send the output string */
long id ; /* Identifier for the IO device. *

/* For TCP connection, it would * represent a SOCKET */
char (*getch)(long id);

/* Get a character input from the I/O device *
/* This is needed to show scrollable items */
};
typedef struct GenericIO * GEN_IO ;

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 19

4. PORTING RELATED FUNCTIONS

The functions described in this section must be provided by the porting engineer
as part of his porting the Telnet Server. The Windows demo package WTel can be
referenced for examples. In you are using the InterNiche’s IP stack, all these functions
are included.
In the demo packages these functions are either mapped directly to system calls via
MACROS in telport.h, or they are implemented in telport.c

4.1 General Functions

NAME

dtrap()

SYNTAX

void dtrap(void);

DESCRIPTION

This primitive is intended to hook a debugger whenever it is called.

See the detailed description in the Debugging Aids section starting on page 11.

RETURNS

Usually nothing, depends on user modifications.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 20

NAME

dprintf()
info_printf()

SYNTAX

void dprintf(char *, ...);
void info_printf(char *,…);

DESCRIPTION

These routines are functionally the same as printf. They are called by the stack
code to inform the programmer or end user of system status. dprintf() prints error
warnings during runtime and info_printf() is used to display informational messages.

For example, dprintf() would be used to display errors and info_printf() to
display information about processing that happens in the background (i.e. arrival of a
packet, change of a Telnet option, etc.).

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 21

4.2 Telnet Server Entry Points

NAME

tel_init()

SYNTAX

int tel_init (void);

DESCRIPTION

Initialize the Telnet Server.

1. Opens a listen socket on Telnet port
2. Builds the user, password database
3. Reads values from non-volatile RAM (optional)

RETURNS

Returns SUCCESS (0), else returns a non-zero error code.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 22

NAME

tel_check()

SYNTAX

void tel_check (void);

DESCRIPTION

Does routine Telnet processing. It should be called on every time tick. It does the
following:

1. If there is a request for a new connection, bring one up
2. For each of the ongoing Telnet connections, check if any new data has arrived. If yes,

process the data
3. Close a connection if it has remained idle for a long time

RETURNS

Nothing

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 23

NAME

tel_cleanup()

SYNTAX

void tel_cleanup (void);

DESCRIPTION

Performs cleanup for Telnet. That is:

• Closes all open Sockets
• Frees all allocated memory

RETURNS

Nothing.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 24

4.3 Telnet User Authentication

NAME

TEL_ADD_USER()

SYNTAX

int TEL_ADD_USER(char *username, char *password, void *permissions);

DESCRIPTION

Adds information about a new user to the database.

RETURNS

TRUE if the entry was accepted, otherwise FALSE.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 25

NAME

TEL_CHECK_PERMIT()

SYNTAX

int TEL_CHECK_PERMIT(char *username, char *password);

DESCRIPTION

Authenticates the user. Checks if the username and password are a valid
combination. Also verifies the permissions.

RETURNS

TRUE if the entry was validated, otherwise FALSE.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 26

4.4 Telnet Timing Routines

NAME

tel_start_timer()
tel_check_timeout()

SYNTAX

void tel_start_timer (unsigned long *timer);
int tel_check_timeout(unsigned long timer, int interval);

DESCRIPTION

Timers are used as follows:

1. A new timer is defined(u_long sess_timer)
2. tel_start_timer(&sess_timer) is called when the timer is to be started
3. tel_check_timeout(sess_timer,interval_in_secs) is called to find out if a timeout

has occurred

RETURNS

Nothing.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 27

4.5 Functions Supporting Use of GenericIO Structure

NAME

ns_printf()

SYNTAX

int ns_printf(GEN_IO pio,char * format, ...);

DESCRIPTION

A generic printf() routine. It uses information from the GenericIO structure to
send the output to the appropriate device. The GenericIO structure contains a pointer to
the function to be used for sending output to the device (e.g. file, or Telnet connection)
and an ID identifying the specific device. For example, for printing to a file, the function
would point to fprintf and the ID would be handle to file.
So ns_printf() does the following:

1. Allocates memory for storing the output string
2. Uses vsprintf() (or equivalent) to form the output string
3. Uses GenericIO’s output function to send the data
4. Frees the memory that was allocated for the output string
If pio is NULL, then output is sent to console.

RETURNS

Number of bytes that were output, or a negative number if error occurred.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 28

NAME

con_page()

SYNTAX

int con_page(GEN_IO pio, int lines);

DESCRIPTION

Implements a page mechanism. The second argument is the current line number.
This function checks if LINES_PER_PAGE has been printed. If yes, then wait till you get
a character from the input device (GEN_IO has a function to get a character from the
input device). If the user has pressed Esc key or any error has occurred, return 1,
otherwise return 0.

RETURNS

Returns 1 to stop the display, 0 to continue.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 29

NAME

tel_tcp_send()

SYNTAX

int tel_tcp_send(long s, char *buf,int len);

DESCRIPTION

Sends the contents of buf to the Telnet session represented by s. This function
can be used with the GenericIO structure.
This function also provides the translation from LF (\n) to CRLF (\r\n). As Telnet needs
the CRLF sequence, all occurrences of LF are replaced by CRLF.

RETURNS

Returns number of bytes sent.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 30

NAME

tel_tcp_recv()

SYNTAX

int tel_tcp_recv(long s, char *buf,int len);

DESCRIPTION

Accepts input from a Telnet session represented by s. This function can be used
with the GenericIO structure.
This function blocks the processing for the particular Telnet session till some input is
received. It returns the first character of received input and discards other characters.

RETURNS

The first byte that was received. Return 0 if any error occurred.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 31

APPENDIX A: USING THE WINDOWS DEMO - WTEL

The WTel Windows application runs the Telnet Server on a Windows 95 machine
and has been built using Microsoft Visual C++ 4.2. It runs the Telnet Server on WinSock
and provides MS-DOS prompt interface and contains all the Telnet sources. It can be
used to test Telnet or as a demonstration of how the InterNiche Telnet Server works.

To quickly use the WTel application,

1. Open the WTel project workspace in Microsoft Visual C++ 4.2 (or compatible)
environment.

2. Compile and build the executable.
3. Run the executable.
4. From another machine, Telnet into this machine.

WTel is available on request from InterNiche Sales or Support.

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 32

Index
A

access: user-level, 6
add: user to database, 24
add_user(), 16
ALIGN_TYPE, 12
ARM, 11
assembly language, 11
authenticate: user, 13, 25
authentication, 16, 24

B
big endian, 11
BIG_ENDIAN, 11
big-endian, 11
block: Telnet session, 30
blocking function, 30
buf, 29
buffer: input, 17
byte order: conversion functions,

11
BYTE_ORDER, 11

C
C macros, 11
calloc(), 7, 11
check_permit(), 16
cksum1.asm, 11
clock tick, 7
command line, 16, 17
commands: menu, 14
con_page(), 17, 28
connection, 15; request new, 22
conversion functions: byte order,

11
CRLF, 29
CRLF sequence, 29
current line number, 28

D
daemon: Telnet, 6
database: add information, 24;

password, 21; user, 21
debugging, 16; hooks, 19
default: maximum login tries, 16
demo, 31
diagnostic commands, 16
display: errors, 20; informational

messages, 20; output, 17;
processing information, 20

do_command(), 14
dprintf(), 20
dprintf(),, 12
dtrap(), 12, 19

E
echo, 15
endian, 11; big, 11; little, 11
entry points: server, 21; Telnet,

10
errors: display, 20
Esc key, 28
exit, 16
expanded negotiation, 15

F
FCS, 5
fprintf, 27
free(), 7, 11

function: block, 30
functions: byte order conversion,

11

G
GEN_IO, 28
GenericIO, 15, 16, 17, 18, 27,

29, 30
GUI, 16

H
htonl(), 11
htons(), 11

I
info_printf(), 12, 20
input buffer, 17
int 3, 12
Intel 8086, 11
IO structure, 17, 27

L
layer: transport, 13
LF, 29
LINES_PER_PAGE, 28
listen, 14, 21
little endian, 11
LITTLE_ENDIAN, 11
login, 16
login tries: maximum, 16
logout, 16
lswap(), 11

M
maximum login tries, 16
memory, 27; free, 23; sizes, 7
memory access, 7
menu: commands, 16; interface,

6; user, 16
menu commands, 14
Microsoft, 31
Microsoft C, 12
misclib, 16
Motorola 68K, 11

N
negotiation: expanded, 15;

structure, 15
Network Virtual Terminal, 6
non-blocking mode, 14
non-volatile RAM, 21
NPDEBUG, 12
ns_printf(), 15, 17, 27
ntohl(), 11
ntohs(), 11
NVRAM, 21
NVT, 6

O
option: renegotiate, 15
OPTION values, 16
options: setting, 15
output, 27; display, 17

P
page mechanism, 28
password, 16; check, 25;

database, 21
permissions: check, 25
pio, 27

Pkunzip, 8
Porting Related Functions, 19
PowerPC, 11
printf, 20
printf(), 12, 27
processing information: display,

20

R
renegotiate: option, 15
request: new connection, 22
requirements: (memory, etc.), 7
RFC0854, 5
routines: timing, 26

S
send_packet(), 6
server: entry points, 21
setsockopt(), 14
setting options, 15
snmpv3.lib, 7
Sockets: close, 23
Sockets, defined, 5
sprintf(), 17
statistics, 16
status, 15
stdio.h, 10
sub-negotiation, 15
suppress Go Ahead, 15
sys_accept(), 13
sys_bind(), 13
sys_closesocket(), 13
sys_error(), 13
SYS_EWOULDBLOCK, 14
sys_listen(), 13
sys_recv(), 13, 14
sys_send(), 13
sys_socket(), 13
system: status, 20

T
TCP: transport layer, 13
TEL_ADD_USER(), 16, 24
TEL_ALLOC(), 7, 11
tel_check(), 7, 10, 22
TEL_CHECK_PERMIT(), 16,

25
tel_check_timeout(), 14, 26
tel_cleanup(), 10, 23
tel_exec_cmd(), 14
TEL_FREE(), 7, 11
TEL_IDLE_TIME, 13
TEL_INICHE_IP, 13
tel_init(), 10, 14, 16, 21
TEL_MAX_LOGIN_TRIES, 16
TEL_MENU, 7, 13
tel_menu_init(), 13
tel_opt_list, 15
tel_proc_subcmd(), 15
TEL_SESS_TIMEOUT, 13
TEL_SHOW_MSG, 7, 10, 13
tel_show_stats(), 15
tel_start_timer(), 14, 26
tel_tcp_recv(), 16, 30
tel_tcp_send(), 29
TEL_USERAUTH, 7, 13
telerr.c, 9

 PORTABLE TELNET SERVER TECHNICAL REFERENCE
 InterNiche Technologies Inc. Confidential 33

telmenu.c, 9
Telnet, 5; entry points, 10;

options, 15; server, 6; server
entry points, 21; timing
routines, 26; user menu, 16

telnet.c, 9
telnet.h, 9
TELNET_SRV, 10, 13
TELNET_SVR, 7
TelnetOption, 15
TelOptionList, 15
telparse.c, 9
telport.c, 10, 19
telport.h, 10, 12, 16, 19
telsrc.zip, 8
Testing, 16

tick, 22
timeout, 26
timer: define new, 26; start, 26
time-ticks, 14
tk_yield(), 16
transport: layer, 13
tries: login maximum, 16
tshow, 16
tstats, 16
Ttiming Rroutines, 26

U
u_long sess_timer, 26
UNIX, 16

user: add to database, 24;
authentication, 13; database,
21

user authentication, 16, 24
user menu, 16
user-level: access, 6
username: check, 25
userpass.c, 16

V
vsprintf(), 27

W
Windows: demo, 31
Windows 95, 16
WinSock, 13, 14, 31
WTel, 19, 31

