
INTERNICHE’S C COMPILER AND TOOLS TECHNICAL NOTE

Rev 00.9.9.17 INTERNICHE’S C COMPILER AND TOOLS TECHNICAL NOTE 1
InterNiche Technologies Inc. Confidential

Introduction

This document provides guidelines on how to build the InterNiche sources.

InterNiche software is designed to be compiled on a variety of development systems and for a wide
range of target systems using any ANSI C Compiler. Makefiles are also provided which are designed
to work with standard make utilities.

Starting from this base, experienced programmers should find it easy to move to their specific
development, target and compiler systems. However, when we build a source tree for shipment to a
customer, we have to pick one of our many supported configurations for the files we ship.

For this release, we have selected DOS and Windows 95/98 as both development and target systems.
Even if your target system is not DOS or Windows 95/98, we recommend you build and test your
software under DOS or Windows 95/98 before starting your port. We’ve selected several popular
DOS and Windows 95/98 C compilers (and their associated tool-sets) to be supported “out of the
box”.

Each compiler is supported by the inclusion of a cflags file, which is included in all the subdirectory
makefiles and sets the compiler commands, options, etc.

Microsoft 8.0c (VCC 1.x) nmake cflags.mc8 masm DOS target

Microsoft Visual C++ 6.0 nmake cflags.m32 nasm Win 95/98 target

Borland 4.x make cflags.bc4 tasm DOS target

Although the builds for DOS systems can usually be done in a Windows 95 or NT environment, the
applications themselves usually require a plain DOS environment when they execute. This is because the
“protected” mode feature of Windows makes it difficult for “DOS box” applications to get at hardware
devices such as networking cards. A side effect of this is that you should not build these executables
with 32 bit versions of the compilers - after all, DOS is a 16 bit system.

The builds for Windows 95/98 can be done in Windows 95/98 environment and the application can be
run in a Windows 95/98 console.

Rev 01.6.20.18 C COMPILER AND TOOLS TECHNICAL NOTE 2
InterNiche Technologies Inc. Confidential

June 2001 - TCP/IP Release 1.8 and Associated Applications

To build your demo executable:

1. Pick a working directory to be \root of your demo system source tree.
2. Unzip the distribution file in the \root, being careful to preserve sub-directories.
3. Copy the correct cflags.xxx file in the \root demo directory into cflags.mak also in \root.
4. Run the make utility (either Borland make or Microsoft nmake) in the TARGET directory.

Specific TARGET directories are provided for various platforms (please see the table below).

The make should recurse into and build all dependent files. The executable file should be created in the
TARGET directory.

Target
Directory

Description

ace360 Build for ACE360 based board with SDS Tools (cflags.sds)
armarm Build for ARM PID based board with ARM Tools (cflags.arm)
armgh Build for ARM PID based board with GHS Tools (cflags.gh2)

dosmain Build an executable for DOS (cflags.mc8 or cflags.bc4)
mpc860 Build for MPC860 (MBX) based board with GHS Tools (cflags.gh1)
net186 Build for NET186 based board (cflags.n86)

vrtxsa86 Build for VRTX SA86 (cflags.m86)
cs89712 Build for Cirrus Logic’s cs89712 ARM7 development board (cflags.gh2)
win32 Build for Microsoft Windows (cflags.m32)

The build process for releases starting with 1.8 is different from earlier releases. In prior releases, port
dependent files such as ipport.h and webport.h were named and edited in the TARGET directory as
ipport.h_h and webport.h_h. At build time these files were copied to ..\h_h directory and renamed
as ipport.h and webport.h etc. In release 1.8 this process is still the same with the one difference that
the ..\h_h directory has now been renamed to ..\h directory. All the relevant header files are now in
this directory. This process of editing the ipport.h_h etc files in the TARGET directory and then
copying them at build time allows for providing port dependent files for various targets within the same
source tree.

Please note that the sources shipped will be configured for the requested TARGET. In order to build for
other TARGETs, you will have to do the configuration. This will require setting appropriate options in
ipport.h_h (enabling/disabling modules) and makefile (linking appropriate modules).

