
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Driver Execution Environment
Core Interface Specification (DXE CIS)

A Foundation Specification

Draft for Review

Version 0.9
September 16, 2003

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright  1999–2003, Intel Corporation.

 Draft for Review

Version 0.9 September 2003 iii

Revision History
Revision Revision History Date

0.9 First public release. 9/16/03

 Added "A Foundation Specification" line to the title page. No other
changes, so the revision number and date were not changed.

6/30/04

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..11
Overview..11
Organization of the DXE CIS ...11
Target Audience ..12
Conventions Used in This Document...12

Data Structure Descriptions ..12
Protocol Descriptions ..13
Procedure Descriptions...13
Instruction Descriptions...14
Pseudo-Code Conventions ...14
Typographic Conventions ...14

2 Overview ...17
Driver Execution Environment (DXE) Phase..17
EFI System Table ..18

Overview...18
EFI Boot Services Table ...19
EFI Runtime Services Table..20
DXE Services Table ..20

DXE Foundation ..21
DXE Dispatcher ...21
DXE Drivers...21
DXE Architectural Protocols...22

3 Boot Manager ...25
Boot Manager ..25

4 EFI System Table ...27
Introduction..27
EFI Image Entry Point..27

EFI_IMAGE_ENTRY_POINT ..28
EFI Table Header ..30
EFI System Table ..31
EFI Boot Services Table ..34

EFI_BOOT_SERVICES ..34
EFI Runtime Services Table ..40

EFI_RUNTIME_SERVICES ..40
EFI Configuration Table ...43
DXE Services Table...45

DXE_SERVICES ..45
EFI Image Entry Point Examples ...48

EFI Application Example ...48
Non-EFI Driver Model Example (Resident in Memory)..51
Non-EFI Driver Model (Nonresident in Memory) ...52

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

vi September 2003 Version 0.9

EFI Driver Model Example ..53
EFI Driver Model Example (Unloadable) ...54
EFI Driver Model Example (Multiple Instances)...56

5 Services - Boot Services ...59
EFI 1.10 Boot Services ..59
Extensions to EFI 1.10 Boot Services..61

CreateEvent()..61
LoadImage()..65

6 Services - Runtime Services...69
EFI 1.10 Runtime Services ..69
Additional Runtime Services ..70

Status Code Services..70
ReportStatusCode()..71

7 Services - DXE Services..75
Introduction..75
Global Coherency Domain Services ..75

Overview...75
Global Coherency Domain (GCD) Services Overview75
GCD Memory Resources..75
GCD I/O Resources..77

Global Coherency Domain Services..79
AddMemorySpace()..80
AllocateMemorySpace() ...83
FreeMemorySpace()...86
RemoveMemorySpace()...88
GetMemorySpaceDescriptor() ..90
SetMemorySpaceAttributes()..93
GetMemorySpaceMap() ...95
AddIoSpace() ...97
AllocateIoSpace() ...99
FreeIoSpace()...102
RemoveIoSpace()...104
GetIoSpaceDescriptor() ..106
GetIoSpaceMap() ...108

Dispatcher Services...110
Dispatcher Services ..110
Dispatch()..111
Schedule()...112
Trust() ...113
ProcessFirmwareVolume()..114

8 Protocols - Device Path Protocol .. 117
Introduction..117
Firmware Volume File Path Media Device Path...118

Draft for Review Contents

Version 0.9 September 2003 vii

9 DXE Foundation .. 119
Introduction..119
Hand-Off Block (HOB) List...120
DXE Foundation Data Structures...121
Required DXE Foundation Components ..122
Handing Control to DXE Dispatcher...124
DXE Foundation Entry Point ..125

DXE Foundation Entry Point ...125
DXE_ENTRY_POINT..126

Dependencies..127
EFI Boot Services Table ...127

EFI Boot Services Dependencies ...127
SetTimer() ..128
RaiseTPL() ...128
RestoreTPL() ..129
SetWatchdogTimer() ..129
Stall() ..129
GetNextMonotonicCount() ..129
CalculateCrc32()...129

EFI Runtime Services Table..130
EFI Runtime Services Dependencies ...130
GetVariable() ..130
GetNextVariableName() ...130
SetVariable() ..130
GetTime() ..131
SetTime() ..131
GetWakeupTime() ..131
SetWakeupTime()...131
SetVirtualAddressMap()..131
ConvertPointer() ...132
ResetSystem()..132
GetNextHighMonotonicCount()...132
ReportStatusCode()..132

DXE Services Table ..132
DXE Services Dependencies..132
GetMemorySpaceDescriptor() ..133
SetMemorySpaceAttributes()..133
GetMemorySpaceMap() ...133

HOB Translations ..134
HOB Translations Overview..134
PHIT HOB...134
CPU HOB..134
Resource Descriptor HOBs...135
Firmware Volume HOBs ...135
Memory Allocation HOBs ..136
GUID Extension HOBs..136

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

viii September 2003 Version 0.9

10 DXE Dispatcher ... 137
Introduction..137
Requirements ..138
The a priori File..139

EFI_APRIORI_GUID...140
Dependency Expressions ..140

Dependency Expressions Overview..140
Dependency Expression Instruction Set..140

BEFORE ..142
AFTER ..143
PUSH ..144
AND ..145
OR ..146
NOT ..147
TRUE ..148
FALSE ..149
END ..150
SOR ..151

Dependency Expression with No Dependencies...152
Empty Dependency Expressions ..152
Dependency Expression Reverse Polish Notation (RPN) ...154

DXE Dispatcher State Machine..155
DXE Dispatcher State Machine...155
Example Orderings ...157

Security Considerations ...159

11 DXE Drivers ... 161
Introduction..161
Classes of DXE Drivers ...161

Basic ...161
Early DXE Drivers...161
DXE Drivers That Follow the EFI Driver Model...162

Additional ..162
Additional Classifications ..162

12 DXE Architectural Protocols.. 163
Introduction..163
Boot Device Selection (BDS) Architectural Protocol ..166

EFI_BDS_ARCH_PROTOCOL ...166
EFI_BDS_ARCH_PROTOCOL.Entry() ...167

CPU Architectural Protocol ..168
EFI_CPU_ARCH_PROTOCOL...168
EFI_CPU_ARCH_PROTOCOL.FlushDataCache() ...171
EFI_CPU_ARCH_PROTOCOL.EnableInterrupt() ...173
EFI_CPU_ARCH_PROTOCOL.DisableInterrupt() ..174
EFI_CPU_ARCH_PROTOCOL.GetInterruptState() ..175
EFI_CPU_ARCH_PROTOCOL.Init()...176

Draft for Review Contents

Version 0.9 September 2003 ix

EFI_CPU_ARCH_PROTOCOL. RegisterInterruptHandler()......................................177
EFI_CPU_ARCH_PROTOCOL.GetTimerValue()..179
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes() ..181

Metronome Architectural Protocol..183
EFI_METRONOME_ARCH_PROTOCOL...183
EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()...184

Monotonic Counter Architectural Protocol..185
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL...185

Real Time Clock Architectural Protocol..186
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL ..186

Reset Architectural Protocol ..187
EFI_RESET_ARCH_PROTOCOL ..187

Runtime Architectural Protocol ..188
Runtime Architectural Protocol..188
EFI_RUNTIME_ARCH_PROTOCOL ..188
EFI_RUNTIME_ARCH_PROTOCOL.RegisterImage()..190
EFI_RUNTIME_ARCH_PROTOCOL.RegisterEvent()...192

Security Architectural Protocol ...194
EFI_SECURITY_ARCH_PROTOCOL ..194
EFI_SECURITY_ARCH_PROTOCOL. FileAuthenticationState()..............................196

Status Code Architectural Protocol ..198
EFI_STATUS_CODE_ARCH_PROTOCOL ..198

Timer Architectural Protocol...199
EFI_TIMER_ARCH_PROTOCOL ...199
EFI_TIMER_ARCH_PROTOCOL.RegisterHandler() ..201
EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod() ...203
EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod() ...204
EFI_TIMER_ARCH_PROTOCOL. GenerateSoftInterrupt().......................................205

Variable Architectural Protocol...206
EFI_VARIABLE_ARCH_PROTOCOL...206

Variable Write Architectural Protocol ...207
EFI_VARIABLE_WRITE_ARCH_PROTOCOL..207

Watchdog Timer Architectural Protocol..208
Watchdog Timer Architectural Protocol ...208
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL ..208
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. RegisterHandler()210
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. SetTimerPeriod()212
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. GetTimerPeriod()213

13 Returned Status Codes .. 215
Returned Status Codes..215
EFI_STATUS Codes Ranges ..215
EFI_STATUS Success Codes (High Bit Clear) ..215
EFI_STATUS Error Codes (High Bit Set)...216
EFI_STATUS Warning Codes (High Bit Clear) ..217

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

x September 2003 Version 0.9

14 Dependency Expression Grammar ... 219
Dependency Expression Grammar ..219

Example Dependency Expression BNF Grammar ..219
Sample Dependency Expressions ..219

Figures
Figure 2.1. Framework Firmware Phases ...18
Figure 7.1. GCD Memory State Transitions ..77
Figure 7.2. GCD I/O State Transitions ..78
Figure 9.1. HOB List ...120
Figure 9.2. EFI System Table and Related Components ..121
Figure 9.3. DXE Foundation Components ..122
Figure 10.1. DXE Driver States...155
Figure 10.2. Sample Firmware Volume...157
Figure 12.1. DXE Architectural Protocols..164

Tables
Table 1.1. Organization of the DXE CIS..11
Table 5.1. Boot Services in the EFI 1.10 Specification..59
Table 6.1. EFI 1.10 Runtime Services ..69
Table 6.2. Status Code Runtime Services ..70
Table 7.1. Global Coherency Domain Services ..79
Table 7.2. Dispatcher Services ...110
Table 8.1. Firmware Volume File Path Media Device Path ...118
Table 9.1. Boot Service Dependencies ...127
Table 9.2. Runtime Service Dependencies ...130
Table 9.3. DXE Service Dependencies ...133
Table 9.4. Resource Descriptor HOB to GCD Type Mapping ...135
Table 10.1. Dependency Expression Opcode Summary...141
Table 10.2. DXE Dispatcher Orderings ...158

Draft for Review

Version 0.9 September 2003 11

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
Driver Execution Environment (DXE) phase of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This DXE Core Interface Specification (CIS) does the
following:

• Describes the basic components of the DXE phase
• Provides code definitions for services and functions that are architecturally required by the

Intel® Platform Innovation Framework for EFI Architecture Specification
• Presents a set of backward-compatible extensions to the EFI 1.10 Specification
• Describes the machine preparation that is required for subsequent phases of firmware execution

See Organization of the DXE CIS for more information.

Organization of the DXE CIS
This DXE Foundation Interface Specification (CIS) is organized as listed below. Because the DXE
Foundation is just one component of a Framework-based firmware solution, there are a number of
additional specifications that are referred to throughout this document:

• For references to other Framework specifications, click on the hyperlink in the page or navigate
through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

• For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

Table 1.1. Organization of the DXE CIS

Book Description

Overview Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.

Boot Manager Describes the boot manager, which is used to load EFI drivers, EFI
applications, and EFI OS loaders.

EFI System Table Describes the EFI System Table that is passed to every EFI driver
and EFI application.

Services - Boot Services Contains the definitions of the fundamental services that are present
in an EFI-compliant system before an OS is booted.

Services - Runtime Services Contains definitions for the fundamental services that are present in
an EFI-compliant system before and after an OS is booted.

Services - DXE Services Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

12 September 2003 Version 0.9

Book Description

Protocols - Device Path Protocol Defines the device path extensions required by the DXE
Foundation.

DXE Foundation Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an EFI
System Table, EFI Boot Services, EFI Runtime Services, and the
DXE Services.

DXE Dispatcher Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

DXE Drivers Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

DXE Architectural Protocols Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to
produce the EFI Boot Services, EFI Runtime Services, and DXE
Services.

Returned Status Codes Lists success, error, and warning codes returned by DXE and EFI
interfaces.

Dependency Expression Grammar Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

Target Audience
This document is intended for the following readers:

• IHVs and OEMs who will be implementing DXE drivers that are stored in firmware volumes.
• BIOS developers, either those who create general-purpose BIOS and other firmware products

or those who modify these products for use in Intel® architecture–based products.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

Draft for Review Introduction

Version 0.9 September 2003 13

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

14 September 2003 Version 0.9

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

SYNTAX: A brief description of the instruction.

DESCRIPTION: A description of the functionality provided by the
instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.

BEHAVIORS AND RESTRICTIONS:
An item-by-item description of the behavior of each
operand involved in the instruction and any restrictions
that apply to the operands or the instruction.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Draft for Review Introduction

Version 0.9 September 2003 15

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

16 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 17

2
Overview

Driver Execution Environment (DXE) Phase
The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in the
Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification.

There are several components in the DXE phase:

• DXE Foundation
• DXE Dispatcher
• A set of DXE drivers

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phase is terminated
when an operating system is successfully booted. The DXE Foundation is composed of boot
services code, so no code from the DXE Foundation itself is allowed to persist into the OS runtime
environment. Only the runtime data structures allocated by the DXE Foundation and services and
data structured produced by runtime DXE drivers are allowed to persist into the OS runtime
environment.

The figure below shows the phases that a platform with Framework firmware will execute.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

18 September 2003 Version 0.9

Figure 2.1. Framework Firmware Phases

In a Framework firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’s interaction with the BDS phase. The DXE phase does not require a PEI phase to be
executed. The only requirement for the DXE phase to execute is the presence of a valid HOB
list. There are many different implementations that can produce a valid HOB list for the DXE phase
to execute. The PEI phase in a Framework firmware implementation is just one of many possible
implementations.

EFI System Table

Overview
The EFI System Table is passed to every executable component in the DXE phase. The EFI
System Table contains a pointer to the following:

• EFI Boot Services Table
• EFI Runtime Services Table

It also contains pointers to the console devices and their associated I/O protocols. In addition, the
EFI System Table contains a pointer to the EFI Configuration Table, and this table contains a list of
GUID/pointer pairs. The EFI Configuration Table may include tables such as the DXE Services
Table, HOB list, ACPI table, SMBIOS table, and SAL System table.

Draft for Review Overview

Version 0.9 September 2003 19

The EFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the EFI Boot Services to look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the EFI System
Table.

EFI Boot Services Table
The following is a brief summary of the services that are available through the EFI Boot Services
Table. These services are described in detail in the EFI 1.10 Specification. This DXE CIS makes a
few minor, backward-compatible extensions to these services.

Task Priority Services: Provides services to increase or decrease the current task
priority level. This can be used to implement simple locks and
to disable the timer interrupt for short periods of time. These
services depend on the CPU Architectural Protocol.

Memory Services: Provides services to allocate and free pages in 4 KB
increments and allocate and free pool on byte boundaries. It
also provides a service to retrieve a map of all the current
physical memory usage in the platform.

Event and Timer
Services:

Provides services to create events, signal events, check the
status of events, wait for events, and close events. One class
of events is timer events, and that class supports periodic
timers with variable frequencies and one-shot timers with
variable durations. These services depend on the CPU
Architectural Protocol, the Timer Architectural Protocol, the
Metronome Architectural Protocol, and the Watchdog Timer
Architectural Protocol.

Protocol Handler
Services:

Provides services to add and remove handles from the handle
database. It also provides services to add and remove
protocols from the handles in the handle database. Additional
services are available that allow any component to lookup
handles in the handle database, and open and close protocols
in the handle database.

Image Services: Provides services to load, start, exit, and unload images using
the PE/COFF image format. These services use the services
of the Security Architectural Protocol if it is present.

Driver Support
Services:

Provides services to connect and disconnect drivers to devices
in the platform. These services are used by the BDS phase to
either connect all drivers to all devices, or to connect only the
minimum number of drivers to devices required to establish
the consoles and boot an operating system. The minimal
connect strategy is one possible mechanism to reduce boot
time.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

20 September 2003 Version 0.9

EFI Runtime Services Table
The following is a brief summary of the services that are available through the EFI Runtime
Services Table. These services are described in detail in the EFI 1.10 Specification. One additional
runtime service, Status Code Services, is described in this specification.

Variable Services : Provides services to look up, add, and remove environment
variables from nonvolatile storage. These services depend on
the Variable Architectural Protocol and the Variable Write
Architectural Protocol.

Real Time Clock
Services:

Provides services to get and set the current time and date. It
also provides services to get and set the time and date of an
optional wake-up timer. These services depend on the Real
Time Clock Architectural Protocol.

Reset Services: Provides services to shut down or reset the platform. These
services depend on the Reset Architectural Protocol.

Status Code Services: Provides services to send status codes to a system log or a
status code reporting device. These services depend on the
Status Code Architectural Protocol.

Virtual Memory
Services:

Provides services that allow the runtime DXE components to
be converted from a physical memory map to a virtual
memory map. These services can only be called once in
physical mode. Once the physical to virtual conversion has
been performed, these services cannot be called again. These
services depend on the Runtime Architectural Protocol.

DXE Services Table
The following is a brief summary of the services that are available through the DXE Services
Table. These are new services that are available in boot service time and are required only by the
DXE Foundation and DXE drivers.

Global Coherency
Domain Services:

Provides services to manage I/O resources, memory-mapped
I/O resources, and system memory resources in the platform.
These services are used to dynamically add and remove these
resources from the processor’s global coherency domain.

Dispatcher Services: Provides services to manage DXE drivers that are being
dispatched by the DXE Dispatcher.

Draft for Review Overview

Version 0.9 September 2003 21

DXE Foundation
The DXE Foundation is a boot service image that is responsible for producing the following:

• EFI Boot Services
• EFI Runtime Services
• DXE Services

The DXE Foundation consumes a HOB list and the services of the DXE Architectural Protocols to
produce the full complement of EFI Boot Services, EFI Runtime Services, and DXE Services. The
HOB list is described in detail in the Intel® Platform Innovation Framework for EFI Hand-Off
Block (HOB) Specification.

The DXE Foundation is an implementation of EFI. The DXE Foundation defined in this
specification is backward compatible with the EFI 1.10 Specification. As a result, both the DXE
Foundation and DXE drivers share many of the attributes of EFI images. Because this specification
makes extensions to the standard EFI interfaces, DXE images will not be functional on EFI systems
that are not compliant with this DXE CIS. However, EFI images must be functional on all EFI-
compliant systems including those that are compliant with the DXE CIS.

DXE Dispatcher
The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The
proper order is determine by a combination of an a priori file that is optionally stored in the
firmware volume and the dependency expressions that are part of the DXE drivers. The
dependency expression tells the DXE Dispatcher the set of services that a particular DXE driver
requires to be present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE
driver to execute until all of the DXE driver’s dependencies have been satisfied. After all of the
DXE drivers have been loaded and executed by the DXE Dispatcher, control is handed to the BDS
Architectural Protocol that is responsible for implementing a boot policy that is compliant with the
EFI Boot Manager described in the EFI 1.10 Specification.

DXE Drivers
The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce I/O abstractions for consoles and boot devices.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

22 September 2003 Version 0.9

DXE Architectural Protocols
The following is a brief summary of the DXE Architectural Protocols. The DXE Foundation is
abstracted from the platform through the DXE Architectural Protocols. The DXE Architectural
Protocols manifest the platform-specific components of the DXE Foundation. DXE drivers that are
loaded and executed by the DXE Dispatcher component of the DXE Foundation must produce
these protocols.

Security Architectural
Protocol:

Allows the DXE Foundation to authenticate files stored in
firmware volumes before they are used.

CPU Architectural
Protocol:

Provides services to manage caches, manage interrupts,
retrieve the processor’s frequency, and query any processor-
based timers.

Metronome
Architectural Protocol:

Provides the services required to perform very short calibrated
stalls.

Timer Architectural
Protocol:

Provides the services required to install and enable the
heartbeat timer interrupt required by the timer services in the
DXE Foundation.

BDS Architectural
Protocol:

Provides an entry point that the DXE Foundation calls once
after all of the DXE drivers have been dispatched from all of
the firmware volumes. This entry point is the transition from
the DXE phase to the Boot Device Selection (BDS) phase, and
it is responsible for establishing consoles and enabling the
boot devices required to boot an OS.

Watchdog Timer
Architectural Protocol:

Provides the services required to enable and disable a
watchdog timer in the platform.

Runtime Architectural
Protocol:

Provides the services required to convert all runtime services
and runtime drivers from physical mappings to virtual
mappings.

Variable Architectural
Protocol:

Provides the services to retrieve environment variables and set
volatile environment variables.

Variable Write
Architectural Protocol:

Provides the services to set nonvolatile environment variables.

Monotonic Counter
Architectural Protocol:

Provides the services required by the DXE Foundation to
manage a 64-bit monotonic counter.

Reset Architectural
Protocol:

Provides the services required to reset or shutdown the
platform.

Draft for Review Overview

Version 0.9 September 2003 23

Status Code
Architectural Protocol:

Provides the services to send status codes from the DXE
Foundation or DXE drivers to a log or device.

Real Time Clock
Architectural Protocol:

Provides the services to retrieve and set the current time and
date as well as the time and date of an optional wake-up timer.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

24 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 25

3
Boot Manager

Boot Manager
The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the EFI 1.10 Specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase
of execution.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose
dependencies have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS
phase is responsible for the following:

• Initializing console devices
• Loading device drivers
• Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to see if the
dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

26 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 27

4
EFI System Table

Introduction
The topics in this book describe the following:

• The entry point to a DXE or EFI image
• The parameters that are passed to that entry point
• Examples of how the various table examples are presented in the EFI environment

There are four types of EFI images that can be loaded and executed by EFI firmware:

• EFI applications
• EFI OS loaders
• DXE drivers
• EFI drivers

There are no differences in the entry point for these four image types.

EFI Image Entry Point
Two parameters are passed to the entry point of an EFI image:

• The image handle of the EFI image being executed
• A pointer to the EFI System Table

The EFI System Table contains pointers to the following:

• Active console devices
• EFI Boot Services Table
• EFI Runtime Services Table
• List of EFI Configuration Tables such as the DXE Services Table, HOB list, ACPI table,

SMBIOS table, and SAL System Table

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

28 September 2003 Version 0.9

EFI_IMAGE_ENTRY_POINT

Summary
This function is the main entry point for a DXE or EFI image. This entry point is the same for EFI
applications, EFI OS loaders, DXE drivers, and EFI drivers including both device drivers and bus
drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters
ImageHandle

The firmware allocated handle for the EFI image.

SystemTable

A pointer to the EFI System Table.

Description
This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service LoadImage(). An EFI image is invoked through the EFI Boot
Service StartImage().

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the EFI system table
contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are DXE Services, HOB List, ACPI,
SMBIOS, and SAL System Table.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI_LOADED_IMAGE protocol that returns the source location of the image, the
memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE structure is defined in the EFI 1.10 Specification.

If the EFI image is an EFI application, then the EFI application executes and either returns or calls
the EFI Boot Services Exit(). An EFI application is always unloaded from memory when it
exits, and its return status is returned to the component that started the EFI application.

If the EFI image is an EFI OS loader, then the EFI OS loader executes and either returns, calls the
EFI Boot Service Exit(), or calls the EFI Boot Service ExitBootServices(). If the EFI

Draft for Review EFI System Table

Version 0.9 September 2003 29

OS Loader returns or calls Exit(), then the load of the OS has failed, and the EFI OS loader is
unloaded from memory and control is returned to the component that attempted to boot the EFI OS
loader. If ExitBootServices() is called, then the OS loader has taken control of the
platform, and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem().

If the EFI image is an EFI driver, then the EFI driver executes and either returns or calls the EFI
Boot Service Exit(). If an EFI driver returns an error, then the driver is unloaded from memory.
If the EFI driver returns EFI_SUCCESS, then it stays resident in memory. If the EFI driver does
not follow the EFI Driver Model, then it performs any required initialization and installs its
protocol services before returning. If the EFI driver does follow the EFI Driver Model, then the
entry point is not allowed to touch any device hardware. Instead, the entry point is required to
create and install the EFI_DRIVER_BINDING_PROTOCOL (defined in the EFI 1.10
Specification) on the ImageHandle of the EFI driver. If this process is completed, then
EFI_SUCCESS is returned. If the resources are not available to complete the driver initialization,
then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_UNLOAD_IMAGE The driver was initialized, and the driver should be unloaded from
memory

Other error codes The driver failed to initialize, and the driver should be unloaded from
memory.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

30 September 2003 Version 0.9

EFI Table Header

Summary
Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {

UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved;

} EFI_TABLE_HEADER;

Parameters
Signature

A 64-bit signature that identifies the type of table that follows. Unique signatures
have been generated for the EFI System Table, the EFI Boot Services Table, and the
EFI Runtime Services Table.

Revision

The revision of the EFI specification to which this table conforms. The upper 16 bits
of this field contain the major revision value, and the lower 16 bits contain the minor
revision value. The minor revision values are limited to the range of 00..99.

HeaderSize

The size in bytes of the entire table including the EFI_TABLE_HEADER.

CRC32

The 32-bit CRC for the entire table. This value is computed by setting this field to 0
and computing the 32-bit CRC for HeaderSize bytes.

Reserved

Reserved field that must be set to 0.

NOTE
The size of the EFI System Table, EFI Runtime Services Table, and EFI Boot Services Table might
increase over time. It is very important to always use the HeaderSize field of
EFI_TABLE_HEADER to determine the size of these tables.

Description
The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

Draft for Review EFI System Table

Version 0.9 September 2003 31

EFI System Table

Summary
Contains pointers to the runtime and boot services tables.

Related Definitions
#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

typedef struct {
EFI_TABLE_HEADER Hdr;
CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsoleInHandle;
SIMPLE_INPUT_INTERFACE *ConIn;
EFI_HANDLE ConsoleOutHandle;
SIMPLE_TEXT_OUTPUT_INTERFACE *ConOut;
EFI_HANDLE StandardErrorHandle;
SIMPLE_TEXT_OUTPUT_INTERFACE *StdErr;
EFI_RUNTIME_SERVICES *RuntimeServices;
EFI_BOOT_SERVICES *BootServices;
UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

Parameters
Hdr

The table header for the EFI System Table. This header contains the
EFI_SYSTEM_TABLE_SIGNATURE and EFI_SYSTEM_TABLE_REVISION
values along with the size of the EFI_SYSTEM_TABLE structure and a 32-bit CRC
to verify that the contents of the EFI System Table are valid.

FirmwareVendor

A pointer to a null terminated Unicode string that identifies the vendor that produces
the system firmware for the platform.

FirmwareRevision

A firmware vendor specific value that identifies the revision of the system firmware
for the platform.

ConsoleInHandle

The handle for the active console input device. This handle must support the
SIMPLE_INPUT_PROTOCOL. This handle is only valid after the BDS phase has
connected the console devices, and before ExitBootServices() is called.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

32 September 2003 Version 0.9

ConIn

A pointer to the SIMPLE_INPUT_PROTOCOL interface that is associated with
ConsoleInHandle. This interface is only valid after the BDS phase has
connected the console devices, and before ExitBootServices() is called.

ConsoleOutHandle

The handle for the active console output device. This handle must support the
SIMPLE_TEXT_OUTPUT_PROTOCOL. This handle is only valid after the BDS
phase has connected the console devices, and before ExitBootServices() is
called.

ConOut

A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL interface that is associated
with ConsoleOutHandle. This interface is only valid after the BDS phase has
connected the console devices, and before ExitBootServices() is called.

StandardErrorHandle

The handle for the active standard error console device. This handle must support the
SIMPLE_TEXT_OUTPUT_PROTOCOL. This handle is only valid after the BDS
phase has connected the console devices, and before ExitBootServices() is
called.

StdErr

A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL interface that is associated
with StandardErrorHandle. This interface is only valid after the BDS phase
has connected the console devices, and before ExitBootServices() is called.

RuntimeServices

A pointer to the EFI Runtime Services Table.

BootServices

A pointer to the EFI Boot Services Table.

NumberOfTableEntries

The number of EFI Configuration Tables in the buffer ConfigurationTable.

ConfigurationTable

A pointer to the EFI Configuration Tables. The number of entries in the table is
NumberOfTableEntries.

Draft for Review EFI System Table

Version 0.9 September 2003 33

Description
The EFI System Table contains pointers to the runtime and boot services tables. Except for the
table header, all elements in the service tables are prototypes of function pointers to functions as
defined in the following books:

• Services - Boot Services
• Services - Runtime Services

Prior to a call to ExitBootServices(), all of the fields of the EFI System Table are valid.
After an operating system has taken control of the platform with a call to
ExitBootServices(), only the following fields are valid:

• Hdr

• FirmwareVendor

• FirmwareRevision

• RuntimeServices

• NumberOfTableEntries

• ConfigurationTable

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

34 September 2003 Version 0.9

EFI Boot Services Table

EFI_BOOT_SERVICES

Summary
Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION ((1<<16) | (10))

typedef struct {
EFI_TABLE_HEADER Hdr;

//
// Task Priority Services
//
EFI_RAISE_TPL RaiseTPL;
EFI_RESTORE_TPL RestoreTPL;

//
// Memory Services
//
EFI_ALLOCATE_PAGES AllocatePages;
EFI_FREE_PAGES FreePages;
EFI_GET_MEMORY_MAP GetMemoryMap;
EFI_ALLOCATE_POOL AllocatePool;
EFI_FREE_POOL FreePool;

//
// Event & Timer Services
//
EFI_CREATE_EVENT CreateEvent;
EFI_SET_TIMER SetTimer;
EFI_WAIT_FOR_EVENT WaitForEvent;
EFI_SIGNAL_EVENT SignalEvent;
EFI_CLOSE_EVENT CloseEvent;
EFI_CHECK_EVENT CheckEvent;

Draft for Review EFI System Table

Version 0.9 September 2003 35

//
// Protocol Handler Services
//
EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface;
EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface;
EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface;
EFI_HANDLE_PROTOCOL HandleProtocol;
EFI_HANDLE_PROTOCOL PCHandleProtocol;
EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify;
EFI_LOCATE_HANDLE LocateHandle;
EFI_LOCATE_DEVICE_PATH LocateDevicePath;
EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable;

//
// Image Services
//
EFI_IMAGE_LOAD LoadImage;
EFI_IMAGE_START StartImage;
EFI_EXIT Exit;
EFI_IMAGE_UNLOAD UnloadImage;
EFI_EXIT_BOOT_SERVICES ExitBootServices;

//
// Miscellaneous Services
//
EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount;
EFI_STALL Stall;
EFI_SET_WATCHDOG_TIMER SetWatchdogTimer;

//
// Driver Support Services
//
EFI_CONNECT_CONTROLLER ConnectController;
EFI_DISCONNECT_CONTROLLER DisconnectController;

//
// Open and Close Protocol Services
//
EFI_OPEN_PROTOCOL OpenProtocol;
EFI_CLOSE_PROTOCOL CloseProtocol;
EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation;

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

36 September 2003 Version 0.9

//
// Extended Protocol Handler Services
//
EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle;
EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer;
EFI_LOCATE_PROTOCOL LocateProtocol;

EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES

InstallMultipleProtocolInterfaces;

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES

IninstallMultipleProtocolInterfaces;

//
// 32-bit CRC Services
//
EFI_CALCULATE_CRC32 CalculateCrc32;

//
// Memory Utility Services
//
EFI_COPY_MEM CopyMem;
EFI_SET_MEM SetMem;

} EFI_BOOT_SERVICES;

Parameters
Hdr

The table header for the EFI Boot Services Table. This header contains the
EFI_BOOT_SERVICES_SIGNATURE and EFI_BOOT_SERVICES_REVISION
values along with the size of the EFI_BOOT_SERVICES_TABLE structure and a
32-bit CRC to verify that the contents of the EFI Boot Services Table are valid.

RaiseTPL

Raises the task priority level.

RestoreTPL

Restores/lowers the task priority level.

AllocatePages

Allocates pages of a particular type.

FreePages

Frees allocated pages.

GetMemoryMap

Returns the current boot services memory map and memory map key.

Draft for Review EFI System Table

Version 0.9 September 2003 37

AllocatePool

Allocates a pool of a particular type.

FreePool

Frees allocated pool.

CreateEvent

Creates a general-purpose event structure. See the CreateEvent() function
description in this document.

SetTimer

Sets an event to be signaled at a particular time.

WaitForEvent

Stops execution until an event is signaled.

SignalEvent

Signals an event.

CloseEvent

Closes and frees an event structure.

CheckEvent

Checks whether an event is in the signaled state.

InstallProtocolInterface

Installs a protocol interface on a device handle.

ReinstallProtocolInterface

Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface

Removes a protocol interface from a device handle.

HandleProtocol

Queries a handle to determine if it supports a specified protocol.

PCHandleProtocol

Reserved. Must be NULL.

RegisterProtocolNotify

Registers an event that is to be signaled whenever an interface is installed for a
specified protocol.

LocateHandle

Returns an array of handles that support a specified protocol.

LocateDevicePath

Locates all devices on a device path that support a specified protocol and returns the
handle to the device that is closest to the path.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

38 September 2003 Version 0.9

InstallConfigurationTable

Adds, updates, or removes a configuration table from the EFI System Table.

LoadImage

Loads an EFI image into memory. See the LoadImage() function description in
this document.

StartImage

Transfers control to a loaded image’s entry point.

Exit

Exits the image’s entry point.

UnloadImage

Unloads an image.

ExitBootServices

Terminates boot services.

GetNextMonotonicCount

Returns a monotonically increasing count for the platform.

Stall

Stalls the processor.

SetWatchdogTimer

Resets and sets a watchdog timer used during boot services time.

ConnectController

Uses a set of precedence rules to find the best set of drivers to manage a controller.

DisconnectController

Informs a set of drivers to stop managing a controller.

OpenProtocol

Adds elements to the list of agents consuming a protocol interface.

CloseProtocol

Removes elements from the list of agents consuming a protocol interface.

OpenProtocolInformation

Retrieve the list of agents that are currently consuming a protocol interface.

ProtocolsPerHandle

Retrieves the list of protocols installed on a handle. The return buffer is
automatically allocated.

LocateHandleBuffer

Retrieves the list of handles from the handle database that meet the search criteria.
The return buffer is automatically allocated.

Draft for Review EFI System Table

Version 0.9 September 2003 39

LocateProtocol

Finds the first handle in the handle database the supports the requested protocol.

InstallMultipleProtocolInterfaces

Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces

Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32

Computes and returns a 32-bit CRC for a data buffer.

CopyMem

Copies the contents of one buffer to another buffer.

SetMem

Fills a buffer with a specified value.

Description
The EFI Boot Services Table contains a table header and pointers to all of the boot services.
Except for the table header, all elements in the EFI Boot Services Tables are prototypes of function
pointers to functions as defined in Services - Boot Services. The function pointers in this table are
not valid after the operating system has taken control of the platform with a call to
ExitBootServices().

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

40 September 2003 Version 0.9

EFI Runtime Services Table

EFI_RUNTIME_SERVICES

Summary
Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION ((1<<16) | (10))

typedef struct {
EFI_TABLE_HEADER Hdr;

//
// Time Services
//
EFI_GET_TIME GetTime;
EFI_SET_TIME SetTime;
EFI_GET_WAKEUP_TIME GetWakeupTime;
EFI_SET_WAKEUP_TIME SetWakeupTime;

//
// Virtual Memory Services
//
EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
EFI_CONVERT_POINTER ConvertPointer;

//
// Variable Services
//
EFI_GET_VARIABLE GetVariable;
EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
EFI_SET_VARIABLE SetVariable;

//
// Miscellaneous Services
//
EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
EFI_RESET_SYSTEM ResetSystem;

//
// Status Code Services
//
EFI_REPORT_STATUS_CODE ReportStatusCode;

} EFI_RUNTIME_SERVICES;

Draft for Review EFI System Table

Version 0.9 September 2003 41

Parameters
Hdr

The table header for the EFI Runtime Services Table. This header contains the
EFI_RUNTIME_SERVICES_SIGNATURE and
EFI_RUNTIME_SERVICES_REVISION values along with the size of the
EFI_RUNTIME_SERVICES_TABLE structure and a 32-bit CRC to verify that the
contents of the EFI Runtime Services Table are valid.

GetTime

Returns the current time and date and the time-keeping capabilities of the platform.

SetTime

Sets the current local time and date information.

GetWakeupTime

Returns the current wake-up alarm clock setting.

SetWakeupTime

Sets the system wake-up alarm clock time.

SetVirtualAddressMap

Used by an OS loader to convert from physical addressing to virtual addressing.

ConvertPointer

Used by EFI components to convert internal pointers when switching to virtual
addressing.

GetVariable

Returns the value of a variable.

GetNextVariableName

Enumerates the current variable names.

SetVariable

Sets the value of a variable.

GetNextHighMonotonicCount

Returns the next high 32 bits of the platform’s monotonic counter.

ResetSystem

Resets the entire platform.

ReportStatusCode

Provides an interface that a software module can call to report a status code. See the
ReportStatusCode() function description in this document.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

42 September 2003 Version 0.9

Description
The EFI Runtime Services Table contains a table header and pointers to all of the runtime services.
Except for the table header, all elements in the EFI Runtime Services Tables are prototypes of
function pointers to functions as defined Services - Runtime Services. Unlike the EFI Boot
Services Table, this table and the function pointers it contains are valid after the operating system
has taken control of the platform with a call to ExitBootServices(). If a call to
SetVirtualAddressMap() is made by the OS, then the function pointers in this table are
fixed up to point to the new virtually mapped entry points.

Draft for Review EFI System Table

Version 0.9 September 2003 43

EFI Configuration Table

Summary
The ConfigurationTable field of the EFI System Table points to a list of GUID/pointer
pairs. The lists of GUIDs below are required for OS and firmware interoperability. Other GUIDs
may be defined as required by different IBV, OEMs, IHVs, and OSVs.

Related Definitions
typedef struct{

EFI_GUID VendorGuid;
VOID *VendorTable;

} EFI_CONFIGURATION_TABLE;

Parameters
VendorGuid

The 128-bit GUID value that uniquely identifies the EFI Configuration Table. See
GUID Definitions below for GUID values defined by this specification.

VendorTable

A pointer to the table associated with VendorGuid.

Description
The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by this
EFI_CONFIGURATION_TABLE structure. The number of types of configuration tables is
expected to grow over time, which is why a GUID is used to identify the configuration table type.
The EFI Configuration Table may contain at most once instance of each table type.

GUID Definitions
#define DXE_SERVICES_TABLE_GUID \
{0x5ad34ba,0x6f02,0x4214,0x95,0x2e,0x4d,0xa0,0x39,0x8e,0x2b,0xb9}

#define HOB_LIST_GUID \
{0x7739f24c,0x93d7,0x11d4,0x9a,0x3a,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define ACPI_20_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,0xbc,0x22,0x0,0x80,0xc7,0x3c,0x88,0x81}

#define ACPI_TABLE_GUID \
{0xeb9d2d30,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

44 September 2003 Version 0.9

#define SAL_SYSTEM_TABLE_GUID \
{0xeb9d2d32,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define SMBIOS_TABLE_GUID \
{0xeb9d2d31,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define MPS_TABLE_GUID \
{0xeb9d2d2f,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

Draft for Review EFI System Table

Version 0.9 September 2003 45

DXE Services Table

DXE_SERVICES

Summary
Contains a table header and pointers to all of the DXE-specific services.

Related Definitions
#define DXE_SERVICES_SIGNATURE 0x565245535f455844
#define DXE_SERVICES_REVISION ((0<<16) | (90)

typedef struct {
EFI_TABLE_HEADER Hdr;

//
// Global Coherency Domain Services
//
EFI_ADD_MEMORY_SPACE AddMemorySpace;
EFI_ALLOCATE_MEMORY_SPACE AllocateMemorySpace;
EFI_FREE_MEMORY_SPACE FreeMemorySpace;
EFI_REMOVE_MEMORY_SPACE RemoveMemorySpace;
EFI_GET_MEMORY_SPACE_DESCRIPTOR GetMemorySpaceDescriptor;
EFI_SET_MEMORY_SPACE_ATTRIBUTES SetMemorySpaceAttributes;
EFI_GET_MEMORY_SPACE_MAP GetMemorySpaceMap;
EFI_ADD_IO_SPACE AddIoSpace;
EFI_ALLOCATE_IO_SPACE AllocateIoSpace;
EFI_FREE_IO_SPACE FreeIoSpace;
EFI_REMOVE_IO_SPACE RemoveIoSpace;
EFI_GET_IO_SPACE_DESCRIPTOR GetIoSpaceDescriptor;
EFI_GET_IO_SPACE_MAP GetIoSpaceMap;

//
// Dispatcher Services
//
EFI_DISPATCH Dispatch;
EFI_SCHEDULE Schedule;
EFI_TRUST Trust;

//
// Service to process a single firmware volume found in a

capsule
//
EFI_PROCESS_FIRMWARE_VOLUME ProcessFirmwareVolume;

} DXE_SERVICES;

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

46 September 2003 Version 0.9

Parameters
Hdr

The table header for the DXE Services Table. This header contains the
DXE_SERVICES_SIGNATURE and DXE_SERVICES_REVISION values along
with the size of the DXE_SERVICES_TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMemorySpace

Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor. See the AddMemorySpace() function
description in this document.

AllocateMemorySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the processor. See the
AllocateMemorySpace() function description in this document.

FreeMemorySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor. See the
FreeMemorySpace() function description in this document.

RemoveMemorySpace

Removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor. See the RemoveMemorySpace()
function description in this document.

GetMemorySpaceDescriptor

Retrieves the descriptor for a memory region containing a specified address. See the
GetMemorySpaceDescriptor() function description in this document.

SetMemorySpaceAttributes

Modifies the attributes for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceAttributes() function description in this
document.

GetMemorySpaceMap

Returns a map of the memory resources in the global coherency domain of the
processor. See the GetMemorySpaceMap() function description in this
document.

AddIoSpace

Adds reserved I/O or I/O resources to the global coherency domain of the processor.
See the AddIoSpace() function description in this document.

AllocateIoSpace

Allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the AllocateIoSpace() function description in
this document.

Draft for Review EFI System Table

Version 0.9 September 2003 47

FreeIoSpace

Frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the FreeIoSpace() function description in this
document.

RemoveIoSpace

Removes reserved I/O or I/O resources from the global coherency domain of the
processor. See the RemoveIoSpace() function description in this document.

GetIoSpaceDescriptor

Retrieves the descriptor for an I/O region containing a specified address. See the
GetIoSpaceDescriptor() function description in this document.

GetIoSpaceMap

Returns a map of the I/O resources in the global coherency domain of the processor.
See the GetIoSpaceMap() function description in this document.

Dispatch

Loads and executed DXE drivers from firmware volumes. See the Dispatch()
function description in this document.

Schedule

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. See the Schedule() function description in this document.

Trust

Promotes a file stored in a firmware volume from the untrusted to the trusted state.
See the Trust() function description in this document.

ProcessFirmwareVolume

Creates a firmware volume handle for a firmware volume that is present in system
memory. See the ProcessFirmwareVolume() function description in this
document.

Description
The EFI DXE Services Table contains a table header and pointers to all of the DXE-specific
services. Except for the table header, all elements in the DXE Services Tables are prototypes of
function pointers to functions as defined in Services - DXE Services.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

48 September 2003 Version 0.9

EFI Image Entry Point Examples

EFI Application Example
The following example shows the EFI image entry point for an EFI application. This application
makes use of the EFI System Table, EFI Boot Services Table, EFI Runtime Services Table, and
DXE Services Table.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiApplicationEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
UINTN Index;
BOOLEAN Result;
EFI_STATUS Status;
EFI_TIME *Time;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemorySpaceDescriptor;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {

Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
&(gST->ConfigurationTable[Index].VendorGuid)
);

if (Result) {
gDS = gST->ConfigurationTable[Index].VendorTable;

}
}
if (gDS == NULL) {

return EFI_NOT_FOUND;
}

Draft for Review EFI System Table

Version 0.9 September 2003 49

//
// Use EFI System Table to print “Hello World” to the active console
// output device.
//
Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
if (EFI_ERROR (Status)) {

return Status;
}

//
// Use EFI Boot Services Table to allocate a buffer to store the
// current time and date.
//
Status = gBS->AllocatePool (

EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
);

if (EFI_ERROR (Status)) {
return Status;

}

//
// Use the EFI Runtime Services Table to get the current
// time and date.
//
Status = gRT->GetTime (&Time, NULL)
if (EFI_ERROR (Status)) {

return Status;
}

//
// Use EFI Boot Services to free the buffer that was used to store
// the current time and date.
//
Status = gBS->FreePool (Time);
if (EFI_ERROR (Status)) {

return Status;
}

//
// Use the DXE Services Table to get the current GCD Memory Space Map
//
Status = gDS->GetMemorySpaceMap (

&NumberOfDescriptors,
&MemorySpaceMap
);

if (EFI_ERROR (Status)) {
return Status;

}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

50 September 2003 Version 0.9

//
// Use EFI Boot Services to free the buffer that was used to store
// the GCD Memory Space Map.
//
Status = gBS->FreePool (MemorySpaceMap);
if (EFI_ERROR (Status)) {

return Status;
}

return Status;
}

Draft for Review EFI System Table

Version 0.9 September 2003 51

Non-EFI Driver Model Example (Resident in Memory)
The following example shows the EFI image entry point for an EFI driver that does not follow the
EFI Driver Model. Because this driver returns EFI_SUCCESS, it will stay resident in memory
after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
UINTN Index;
BOOLEAN Result;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {

Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
&(gST->ConfigurationTable[Index].VendorGuid)
);

if (Result) {
gDS = gST->ConfigurationTable[Index].VendorTable;

}
}
if (gDS == NULL) {

return EFI_UNLOAD_IMAGE;
}

//
// Implement driver initialization here.
//

return EFI_SUCCESS;
}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

52 September 2003 Version 0.9

Non-EFI Driver Model (Nonresident in Memory)
The following example shows the EFI image entry point for an EFI driver that also does not follow
the EFI Driver Model. Because this driver returns the error code EFI_UNLOAD_IMAGE, it will
not stay resident in memory after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
UINTN Index;
BOOLEAN Result;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {

Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
&(gST->ConfigurationTable[Index].VendorGuid)
);

if (Result) {
gDS = gST->ConfigurationTable[Index].VendorTable;

}
}
if (gDS == NULL) {

return EFI_UNLOAD_IMAGE;
}

//
// Implement driver initialization here.
//

return EFI_UNLOAD_IMAGE;
}

Draft for Review EFI System Table

Version 0.9 September 2003 53

EFI Driver Model Example
The following is an EFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL is
defined in Chapter 9 of the EFI 1.10 Specification. The function prototypes for the
AbcSupported(), AbcStart(), and AbcStop() functions are defined in Section 9.1 of the
EFI 1.10 Specification. This function saves the driver's image handle and a pointer to the EFI Boot
Services Table in global variables, so that the other functions in the same driver can have access to
these values. It then creates an instance of the EFI_DRIVER_BINDING_PROTOCOL and installs
it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {

AbcSupported,
AbcStart,
AbcStop,
0x10,
NULL,
NULL

};

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
EFI_STATUS Status;

gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;
}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

54 September 2003 Version 0.9

EFI Driver Model Example (Unloadable)
The following is the same EFI Driver Model example as in EFI Driver Model Example, except that
it also includes the code required to allow the driver to be unloaded through the boot service
Unload(). Any protocols installed or memory allocated in AbcEntryPoint() must be
uninstalled or freed in the AbcUnload(). The AbcUnload() function first checks to see how
many controllers this driver is currently managing. If the number of controllers is greater than zero,
then this driver cannot be unloaded at this time, so an error is returned.

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {

AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL

};

EFI_STATUS
AbcUnload (

IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
EFI_STATUS Status;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

if (EFI_ERROR (Status)) {
return Status;

}
LoadedImage->Unload = AbcUnload;

Draft for Review EFI System Table

Version 0.9 September 2003 55

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;
}

EFI_STATUS
AbcUnload (

IN EFI_HANDLE ImageHandle
)

{
EFI_STATUS Status;
UINTN Count;

Status = LibGetManagedControllerHandles (ImageHandle, &Count, NULL);
if (EFI_ERROR (Status)) {

return Status;
}

if (Count > 0) {
return EFI_ACCESS_DENIED;

}

Status = gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;
}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

56 September 2003 Version 0.9

EFI Driver Model Example (Multiple Instances)
The following is the same as the first EFI Driver Model example, except that it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
AbcSupportedA,
AbcStartA,
AbcStopA,
1,
NULL,
NULL

};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
AbcSupportedB,
AbcStartB,
AbcStopB,
1,
NULL,
NULL

};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
AbcSupportedC,
AbcStartC,
AbcStopC,
1,
NULL,
NULL

};

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
EFI_STATUS Status;

gBS = SystemTable->BootServices;

Draft for Review EFI System Table

Version 0.9 September 2003 57

//
// Install mAbcDriverBindingA onto ImageHandle
//
mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL
);

if (EFI_ERROR (Status)) {
return Status;

}

//
// Install mAbcDriverBindingB onto a newly created handle
//
mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
);

if (EFI_ERROR (Status)) {
return Status;

}

//
// Install mAbcDriverBindingC onto a newly created handle
//
mAbcDriverBindingC->ImageHandle = ImageHandle;
mAbcDriverBindingC->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL
);

return Status;
}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

58 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 59

5
Services - Boot Services

EFI 1.10 Boot Services
The table below lists all the boot services that are documented in the EFI 1.10 Specification. See
the EFI 1.10 Specification for a detailed description for each of these boot services.

This DXE CIS defines backward-compatible extensions to the following services:

• CreateEvent()

• LoadImage()

The details of these extensions are contained in the following topics. The extension to
CreateEvent() is a candidate for inclusion in a future revision of the EFI specification.

Table 5.1. Boot Services in the EFI 1.10 Specification

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory
map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

60 September 2003 Version 0.9

Name Type Description

LocateDevicePath Boot Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest
to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of drivers
to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database that
meet the search criteria. The return buffer is automatically
allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolInterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Boot Uninstalls one or more protocol interfaces from a handle.

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services
time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the
EFI System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

Draft for Review Services – Boot Services

Version 0.9 September 2003 61

Extensions to EFI 1.10 Boot Services

CreateEvent()

Summary
Creates an event. This function has been extended from the CreateEvent() Boot Service
defined in the EFI 1.10 Specification. The event types EFI_EVENT_NOTIFY_SIGNAL_ALL and
EFI_EVENT_SIGNAL_READY_TO_BOOT have been added to this service.

Prototype

EFI_STATUS
CreateEvent (

IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN VOID *NotifyContext,
OUT EFI_EVENT *Event
);

Parameters
Type

The type of event to create and its mode and attributes. The #define statements in
"Related Definitions" below can be used to specify an event’s mode and attributes.

NotifyTpl

The task priority level of event notifications. Type EFI_TPL is defined in
RaiseTPL() in the EFI 1.10 Specification.

NotifyFunction

Pointer to the event’s notification function. Type EFI_EVENT_NOTIFY is defined
in "Related Definitions" below.

NotifyContext

Pointer to the notification function’s context; corresponds to parameter Context in
the notification function.

Event

Pointer to the newly created event if the call succeeds; undefined otherwise. Type
EFI_EVENT is defined in "Related Definitions" below.

Description
The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

62 September 2003 Version 0.9

Events exist in one of two states, “waiting” or “signaled." When an event is created, firmware puts
it in the "waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EFI_EVENT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO
queue. There is a queue for each of the “basic” task priority levels defined in the EFI 1.10
Specification (EFI_TPL_APPLICATION, EFI_TPL_CALLBACK, and EFI_TPL_NOTIFY).
The functions in these queues are invoked in FIFO order, starting with the highest priority level
queue and proceeding to the lowest priority queue that is unmasked by the current TPL. If the
current TPL is equal to or greater than the queued notification, it will wait until the TPL is lowered
via RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EFI_EVENT_TIMER and then call the SetTimer() function. When the timer expires,
the firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices() function.
ExitBootServices() can clean up the firmware since it understands firmware internals, but it
cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is
EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES and whose notification function is a function
within the driver itself. Then, when ExitBootServices() has finished its cleanup, it signals
each event of type EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressmap() function in Chapter 6 of the EFI 1.10 Specification.

The EFI_EVENT_NOTIFY_WAIT and EFI_EVENT_NOTIFY_SIGNAL flags are exclusive. If
neither flag is specified, the caller does not require any notification concerning the event and the
NotifyTpl, NotifyFunction, and NotifyContext parameters are ignored. If
EFI_EVENT_NOTIFY_WAIT is specified, then the event is signaled and its notify function is
queued whenever a consumer of the event is waiting for it (via WaitForEvent() or
CheckEvent()). If the EFI_EVENT_NOTIFY_SIGNAL flag is specified then the event’s
notify function is queued whenever the event is signaled.

NOTE
Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Draft for Review Services – Boot Services

Version 0.9 September 2003 63

Related Definitions
//***
// EFI_EVENT
//***
typedef VOID *EFI_EVENT

//***
// Event Types
//***
// These types can be “ORed” together as needed – for example,
// EFI_EVENT_TIMER might be “ORed” with EFI_EVENT_NOTIFY_WAIT or
// EFI_EVENT_NOTIFY_SIGNAL.
#define EFI_EVENT_TIMER 0x80000000
#define EFI_EVENT_RUNTIME 0x40000000
#define EFI_EVENT_RUNTIME_CONTEXT 0x20000000

#define EFI_EVENT_NOTIFY_WAIT 0x00000100
#define EFI_EVENT_NOTIFY_SIGNAL 0x00000200
#define EFI_EVENT_NOTIFY_SIGNAL_ALL 0x00000400

#define EFI_EVENT_SIGNAL_READY_TO_BOOT 0x00000203
#define EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202
#define EFI_EVENT_SIGNAL_LEGACY_BOOT 0x00000204

Following is a description of the fields in the above definition.

EFI_EVENT_TIMER The event is a timer event and may be passed to
SetTimer(). Note that timers only function during boot
services time.

EFI_EVENT_RUNTIME The event is allocated from runtime memory. If an event is
to be signaled after the call to
ExitBootServices(), the event’s data structure
and notification function need to be allocated from runtime
memory. For more information, see
SetVirtualAddressMap() in Services - Runtime
Services.

EFI_EVENT_RUNTIME_CONTEXT The event’s NotifyContext pointer points to a
runtime memory address. See the above discussion of
EFI_EVENT_RUNTIME.

EFI_EVENT_NOTIFY_WAIT The event’s NotifyFunction is to be invoked

whenever the event is being waited on via
WaitForEvent() or CheckEvent().

EFI_EVENT_NOTIFY_SIGNAL The event’s NotifyFunction is to be invoked
whenever the event is signaled via SignalEvent().

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

64 September 2003 Version 0.9

EFI_EVENT_NOTIFY_SIGNAL_ALL Used to signal all events of a specified type. For example,
this bit may be used with
EFI_EVENT_SIGNAL_READY_TO_BOOT.

EFI_EVENT_SIGNAL_READY_TO_BOOT This event is to be notified by the system when the EFI
Boot Manager is about to load and execute a boot option.

EFI_EVENT_SIGNAL_EXIT_BOOT_
SERVICES

This event is to be notified by the system when
ExitBootServices() is invoked. This type cannot
be used with any other EVT bit type. The notification
function for this event is not allowed to use the Memory
Allocation Services, or call any functions that use the
Memory Allocation Services, because these services
modify the current memory map.

EFI_EVENT_SIGNAL_VIRTUAL_
ADDRESS_CHANGE

The event is to be notified by the system when
SetVirtualAddressMap() is performed. This
type cannot be used with any other EVT bit type. See the
discussion above of EFI_EVENT_RUNTIME.

EFI_EVENT_SIGNAL_LEGACY_BOOT This event is to be notified by the system when the EFI Boot
Manager is about to boot a legacy boot option. Events of this
type are notified just before INT19 is invoked.

//***
// EFI_EVENT_NOTIFY
//***
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (

IN EFI_EVENT Event,
IN VOID *Context
);

Event

Event whose notification function is being invoked. Type EFI_EVENT is defined
above.

Context

Pointer to the notification function’s context, which is implementation dependent.
Context corresponds to NotifyContext in CreateEvent().

Status Codes Returned
EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_OUT_OF_RESOURCES The event could not be allocated.

Draft for Review Services – Boot Services

Version 0.9 September 2003 65

LoadImage()

Summary
Loads an EFI image into memory. This function has been extended from the LoadImage() Boot
Service defined in the EFI 1.10 Specification to allow EFI images to be loaded from files stored in
firmware volumes. It also validates the image using the services of the Security Architectural
Protocol.

Prototype

EFI_STATUS
LoadImage (

IN BOOLEAN BootPolicy,
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH *FilePath,
IN VOID *SourceBuffer OPTIONAL ,
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle
);

Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the
boot manager is attempting to load FilePath as a boot selection. Ignored if
SourceBuffer is not NULL.

ParentImageHandle

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description in the EFI 1.10
Specification. This field is used to initialize the ParentHandle field of the
LOADED_IMAGE protocol for the image that is being loaded.

FilePath

The specific file path from which the image is loaded. Type EFI_DEVICE_PATH is
defined in the LocateDevicePath() function description in the EFI 1.10
Specification.

SourceBuffer

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

SourceSize

The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

66 September 2003 Version 0.9

ImageHandle

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI_HANDLE is defined in the InstallProtocolInterface()
function description in the EFI 1.10 Specification.

Description
The LoadImage() function loads an EFI image into memory and returns a handle to the
image. The supported subsystem values in the PE image header are listed in "Related Definitions"
below. The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceSize indicates the image’s size in bytes. FilePath specifies where the image specified
by SourceBuffer and SourceSize was loaded. In this case, the caller has copied the image
into SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_FIRMWARE_VOLUME_PROTOCOL, followed by the SIMPLE_FILE_SYSTEM_PROTOCOL
and then the LOAD_FILE_PROTOCOL to access the file referred to by FilePath. In this case,
the BootPolicy flag is passed to the LOAD_FILE.LoadFile() function and is used to load
the default image responsible for booting when the FilePath only indicates the device. For more
information see the discussion of the Load File Protocol in Chapter 11 of the EFI 1.10
Specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

The image is also validated using the FileAuthenticationState() service of the Security
Architectural Protocol (SAP). If the SAP returns the status EFI_SUCCESS, then the load
operation is completed normally. If the SAP returns the status EFI_SECURITY_VIOLATION,
then the load operation is completed normally, and the EFI_SECURITY_VIOLATION status is
returned. In this case, the caller is not allowed to start the image until some platform specific policy
is executed to protect the system while executing untrusted code. If the SAP returns the status
EFI_ACCESS_DENIED, then the image should never be trusted. In this case, the image is
unloaded from memory, and EFI_ACCESS_DENIED is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED_IMAGE_PROTOCOL. The caller may fill in the image’s “load options”
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling StartImage(). Also, once the image is loaded, the caller either starts it by
calling StartImage() or unloads it by calling UnloadImage().

Draft for Review Services – Boot Services

Version 0.9 September 2003 67

Related Definitions
//**
// Supported subsystem values
//**

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12
#define EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER 13

Following is a description of the fields in the above definition.

EFI_IMAGE_SUBSYSTEM_EFI_
APPLICATION

The image is loaded into memory of type EfiLoaderCode,
and the memory is freed when the application exits.

EFI_IMAGE_SUBSYSTEM_EFI_
BOOT_SERVICE_DRIVER

The image is loaded into memory of type
EfiBootServicesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits
with EFI_SUCCESS, then the memory for the image is not
freed.

EFI_IMAGE_SUBSYSTEM_EFI_
RUNTIME_DRIVER

The image is loaded into memory of type
EfiRuntimeServicesCode. If the image exits with an
error code, then the memory for the image is free. If the image
exits with EFI_SUCCESS, then the memory for the image is not
freed. Images of this type are automatically converted from
physical addresses to virtual address when the Runtime Service
SetVirtualAddressMap() is called.

EFI_IMAGE_SUBSYSTEM_SAL_
RUNTIME_DRIVER

The image is loaded into memory of type
EfiRuntimeServicesCode. If the image exits with an
error code, then the memory for the image is free. If the image
exits with EFI_SUCCESS, then the memory for the image is not
freed. Images of this type are not converted from physical to
virtual addresses when the Runtime Service
SetVirtualAddressMap() is called.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

68 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The image was loaded into memory.

EFI_SECURITY_VIOLATION The image was loaded into memory, but the current security policy
dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED The image was not loaded into memory because the current
security policy dictates that the image should never be executed.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or
not understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Draft for Review

Version 0.9 September 2003 69

6
Services - Runtime Services

EFI 1.10 Runtime Services
The table below lists all the runtime services that are documented in the EFI 1.10 Specification.
See the EFI 1.10 Specification for a detailed description for each of these runtime services.

This DXE CIS defines one additional runtime service:

• Status Code Services

The details of this additional service are contained in the following topics. This service is a
candidate for inclusion in a future revision of the EFI specification.

Table 6.1. EFI 1.10 Runtime Services

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

GetTime Runtime Returns the current time and date, and the time-keeping
capabilities of the platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wake-up alarm clock setting.

SetWakeupTime Runtime Sets the system wake-up alarm clock time.

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to
virtual addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when
switching to virtual addressing.

ResetSystem Runtime Resets the entire platform.

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

70 September 2003 Version 0.9

Additional Runtime Services

Status Code Services
The table below lists the runtime services that are used to report status codes. These services are
candidates for inclusion in a future revision of the EFI specification.

Table 6.2. Status Code Runtime Services

Name Type Description

ReportStatusCode Runtime Reports status codes at boot services time and runtime.

Draft for Review Services – Runtime Services

Version 0.9 September 2003 71

ReportStatusCode()

Summary
Provides an interface that a software module can call to report a status code.

Prototype

EFI_STATUS
(EFIAPI *EFI_REPORT_STATUS_CODE) (

IN EFI_STATUS_CODE_TYPE Type,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID *CallerId OPTIONAL,
IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
Type

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This included
information about the class and subclass that is used to classify the entity as well as
an operation. For progress codes, the operation is the current activity. For error
codes, it is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below. Specific
values are discussed in the Intel® Platform Innovation Framework for EFI Status
Code Specification.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers. Type EFI_GUID is
defined in InstallProtocolInterface() in the EFI 1.10 Specification.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in "Related Definitions” below. The
contents of this data type may have additional GUID-specific data. The standard
GUIDs and their associated data structures are defined in the Intel® Platform
Innovation Framework for EFI Status Code Specification.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

72 September 2003 Version 0.9

Description
Various software modules including drivers can call this function to report a status code. No
disposition of the status code is guaranteed. The ReportStatusCode() function may choose
to log the status code, but this action is not required.

It is possible that this function may get called at EFI_TPL_LEVEL_HIGH. Therefore, this
function cannot call any protocol interface functions or services (including memory allocation) that
are not guaranteed to work at EFI_TPL_LEVEL_HIGH. It should be noted that
SignalEvent() could be called by this function because it works at any TPL including
EFI_TPL_LEVEL_HIGH. It is possible for an implementation to use events to log the status
codes when the TPL level is reduced.

ReportStatusCode() function can perform other implementation specific work, but that is not
specified in the architecture document.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code Architectural Protocol,
EFI_STATUS_CODE_ARCH_PROTOCOL, is responsible for assessing the true severity level
based on the reported severity and other information. This DXE driver may perform platform
specific actions based on the type and severity of the status code being reported.

If Data is present, the Status Code Architectural Protocol driver treats it as read only data. The
Status Code Architectural Protocol driver must copy Data to a local buffer in an atomic operation
before performing any other actions. This is necessary to make this function re-entrant. The size of
the local buffer may be limited. As a result, some of the Data can be lost. The size of the local
buffer should at least be 256 bytes in size. Larger buffers will reduce the probability of losing part
of the Data. Note than multiple status codes may be reported at elevated TPL levels before the
TPL level is reduced. Allocating multiple local buffers may reduce the probability losing status
codes at elevated TPL levels. If all of the local buffers are consumed, then this service may not be
able to perform the platform specific action required by the status code being reported. As a result,
if all the local buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Draft for Review Services – Runtime Services

Version 0.9 September 2003 73

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by
// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

74 September 2003 Version 0.9

#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

//
// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.
//
typedef struct {

UINT16 HeaderSize;
UINT16 Size;
EFI_GUID Type;

} EFI_STATUS_CODE_DATA;

HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in the Intel® Platform Innovation Framework for EFI
Status Code Specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.

Draft for Review

Version 0.9 September 2003 75

7
Services - DXE Services

Introduction
This chapter describes the services from the DXE Services Table. These services include the
following:

• Global Coherency Domain (GCD) Services
• Dispatcher Services

The GCD Services are used to manage the system memory, memory-mapped I/O, and I/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

Global Coherency Domain Services

Overview

Global Coherency Domain (GCD) Services Overview
The Global Coherency Domain (GCD) Services are used to manage the memory and I/O resources
visible to the boot processor. These resources are managed in two different maps:

• GCD memory space map
• GCD I/O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visible to the boot processor, and the second manages the I/O resources visible to the boot
processor. Not all processor types support I/O resources, so the management of I/O resources may
not be required. However, since system memory resources and memory-mapped I/O resources are
required to execute the DXE environment, the management of memory resources is always
required.

GCD Memory Resources
The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

• AddMemorySpace()

• AllocateMemorySpace()

• FreeMemorySpace()

• RemoveMemorySpace()

• SetMemorySpaceAttributes()

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

76 September 2003 Version 0.9

The GCD Services used to retrieve the GCD memory space map include the following:

• GetMemorySpaceDescriptor()

• GetMemorySpaceMap()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are not available to any of the GCD Services that
are used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped I/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. As a result, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as
AllocatePages(), FreePages(), AllocatePool(), FreePool(), and
GetMemoryMap(). See the EFI 1.10 Specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different
states:

• Nonexistent memory
• System memory
• Memory-mapped I/O
• Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. The figure below shows the possible state transitions for each byte of memory in the GCD
memory space map. The transitions are labeled with the GCD Service that can move the byte from
one state to another. The GCD services are required to merge similar memory regions that are
adjacent to each other into a single memory descriptor, which reduces the number of entries in the
GCD memory space map.

Draft for Review Services – DXE Services

Version 0.9 September 2003 77

Figure 7.1. GCD Memory State Transitions

GCD I/O Resources
The Global Coherency Domain (GCD) Services used to manage I/O resources include the
following:

• AddIoSpace()

• AllocateIoSpace()

• FreeIoSpace()

• RemoveIoSpace()

The GCD Services used to retrieve the GCD I/O space map include the following:

• GetIoSpaceDescriptor()

• GetIoSpaceMap()

The GCD I/O space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access I/O
resources. This information is used to initialize the state of the GCD I/O space map. Any I/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage I/O resources. The GCD I/O space map is designed to describe the I/O address space with

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

78 September 2003 Version 0.9

as many as 64 address lines. Each region in the GCD I/O space map can being and end on a byte
boundary.

An I/O region described by the GCD I/O space map can be in several different states. These
include nonexistent I/O, I/O, and reserved I/O. These I/O regions can be allocated and freed by
DXE drivers executing in the DXE environment. The figure below shows the possible state
transitions for each byte of I/O in the GCD I/O space map. The transitions are labeled with the
GCD Service that can move the byte from one state to another. The GCD Services are required to
merge similar I/O regions that are adjacent to each other into a single I/O descriptor, which reduces
the number of entries in the GCD I/O space map.

Figure 7.2. GCD I/O State Transitions

Draft for Review Services – DXE Services

Version 0.9 September 2003 79

Global Coherency Domain Services
The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, allocate, free, and provide maps of the system memory, memory-mapped I/O, and I/O
resources in a platform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and I/O resources in a platform. The table below lists
the Global Coherency Domain Services.

Table 7.1. Global Coherency Domain Services

Name Type Description

AddMemorySpace Boot This service adds reserved memory, system memory, or memory-
mapped I/O resources to the global coherency domain of the
processor.

AllocateMemorySpace Boot This service allocates nonexistent memory, reserved memory,
system memory, or memory-mapped I/O resources from the global
coherency domain of the processor.

FreeMemorySpace Boot This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global
coherency domain of the processor.

RemoveMemorySpace Boot This service removes reserved memory, system memory, or
memory-mapped I/O resources from the global coherency domain
of the processor.

GetMemorySpaceDescriptor Boot This service retrieves the descriptor for a memory region
containing a specified address.

SetMemorySpaceAttributes Boot This service modifies the attributes for a memory region in the
global coherency domain of the processor.

GetMemorySpaceMap Boot Returns a map of the memory resources in the global coherency
domain of the processor.

AddIoSpace Boot This service adds reserved I/O, or I/O resources to the global
coherency domain of the processor.

AllocateIoSpace Boot This service allocates nonexistent I/O, reserved I/O, or I/O
resources from the global coherency domain of the processor.

FreeIoSpace Boot This service frees nonexistent I/O, reserved I/O, or I/O resources
from the global coherency domain of the processor.

RemoveIoSpace Boot This service removes reserved I/O, or I/O resources from the
global coherency domain of the processor.

GetIoSpaceDescriptor Boot This service retrieves the descriptor for an I/O region containing a
specified address.

GetIoSpaceMap Boot Returns a map of the I/O resources in the global coherency domain
of the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

80 September 2003 Version 0.9

AddMemorySpace()

Summary
This service adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor.

Prototype
EFI_STATUS
AddMemorySpace (

IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
);

Parameters
GcdMemoryType

The type of memory resource being added. Type EFI_GCD_MEMORY_TYPE is
defined in “Related Definitions” below. The only types allowed are
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystemMemory, and
EfiGcdMemoryTypeMemoryMappedIo.

BaseAddress

The physical address that is the start address of the memory resource being added.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size, in bytes, of the memory resource that is being added.

Capabilities

The bit mask of attributes that the memory resource region supports. The bit mask of
available attributes is defined in the GetMemoryMap() function description in the
EFI 1.10 Specification.

Description
The AddMemorySpace() function converts unallocated non-existent memory ranges to a range
of reserved memory, a range of system memory, or a range of memory mapped I/O.
BaseAddress and Length specify the memory range, and GcdMemoryType specifies the
memory type. The bit mask of all supported attributes for the memory range being added is
specified by Capabilities. If the memory range is successfully added, then EFI_SUCCESS is
returned.

If the memory range specified by BaseAddress and Length is of type
EfiGcdMemoryTypeSystemMemory, then the memory range may be automatically allocated
for use by the EFI memory services. If the addition of the memory range specified by

Draft for Review Services – DXE Services

Version 0.9 September 2003 81

BaseAddress and Length results in a GCD memory space map containing one or more 4 KB
regions of unallocated EfiGcdMemoryTypeSystemMemory aligned on 4 KB boundaries, then
those regions will always be converted to ranges of allocated
EfiGcdMemoryTypeSystemMemory. This extra conversion will never be performed for
fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, or EfiGcdMemoryTypeMemoryMappedIo, then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddress and Length is not of type
EfiGcdMemoryTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the memory range specified by BaseAddress and Length was allocated in a
prior call to AllocateMemorySpace(), then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_TYPE
//***
typedef enum {

EfiGcdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory,
EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryTypeMaximum

} EFI_GCD_MEMORY_TYPE;

EfiGcdMemoryTypeNonExistent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

EfiGcdMemoryTypeReserved

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be
either system memory or memory-mapped I/O.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

82 September 2003 Version 0.9

EfiGcdMemoryTypeSystemMemory

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

EfiGcdMemoryTypeMemoryMappedIo

A memory region that is visible to the boot processor. This memory region is
currently being decoded by a component as memory-mapped I/O that can be used to
access I/O devices in the platform.

Status Codes Returned
EFI_SUCCESS The memory resource was added to the global coherency domain

of the processor.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length conflicts with a memory
resource range that was previously added to the global
coherency domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length was allocated in a prior call to
AllocateMemorySpace().

Draft for Review Services – DXE Services

Version 0.9 September 2003 83

AllocateMemorySpace()

Summary
This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor.

Prototype
EFI_STATUS
AllocateMemorySpace (

IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
“Related Definitions” below.

GcdMemoryType

The type of memory resource being allocated. Type EFI_GCD_MEMORY_TYPE is
defined in AddMemorySpace(). The only types allowed are
EfiGcdMemoryTypeNonExistent, EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, and
EfiGcdMemoryTypeMemoryMappedIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KB
boundary.

Length

The size in bytes of the memory resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

84 September 2003 Version 0.9

ImageHandle

The image handle of the agent that is allocating the memory resource. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

DeviceHandle

The device handle for which the memory resource is being allocated. If the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The AllocateMemorySpace() function searches for a memory range of type
GcdMemoryType and converts the discovered memory range from the unallocated state to the
allocated state. The parameters GcdAllocateType, Alignment, Length, and
BaseAddress specify the manner in which the GCD memory space map is searched. If a
memory range is found that meets the search criteria, then the base address of the memory range is
returned in BaseAddress, and EFI_SUCCESS is returned. ImageHandle and
DeviceHandle are used to convert the memory range from the unallocated state to the allocated
state. ImageHandle identifies the image that is calling AllocateMemorySpace(), and
DeviceHandle identifies the device that ImageHandle is managing that requires the memory
range. DeviceHandle is optional, because the device that ImageHandle is managing might
not have an associated device handle. If a memory range meeting the search criteria cannot be
found, then EFI_NOT_FOUND is returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
memory space map is searched from the lowest address up to BaseAddress looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
memory space map is searched from BaseAddress down to the lowest address looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD memory space map is
checked to see if the memory range starting at BaseAddress for Length bytes is of type
GcdMemoryType, unallocated, and begins on a the boundary specified by Alignment.

Draft for Review Services – DXE Services

Version 0.9 September 2003 85

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystem Memory, or
EfiGcdMemoryTypeMemoryMappedIo, then EFI_INVALID_PARAMETER is returned.

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_ALLOCATE_TYPE
//***
typedef enum {

EfiGcdAllocateAnySearchBottomUp,
EfiGcdAllocateMaxAddressSearchBottomUp,
EfiGcdAllocateAddress,
EfiGcdAllocateAnySearchTopDown,
EfiGcdAllocateMaxAddressSearchTopDown,
EfiGcdMaxAllocateType

} EFI_GCD_ALLOCATE_TYPE;

Status Codes Returned
EFI_SUCCESS The memory resource was allocated from the global coherency

domain of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

86 September 2003 Version 0.9

FreeMemorySpace()

Summary
This service frees nonexistent memory, reserved memory, system memory, or memory-mapped I/O
resources from the global coherency domain of the processor.

Prototype
EFI_STATUS
FreeMemorySpace (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being freed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the memory resource range that is being freed.

Description
The FreeMemorySpace() function converts the memory range specified by BaseAddress
and Length from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
allocated on previous calls to AllocateMemorySpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 87

Status Codes Returned
EFI_SUCCESS The memory resource was freed from the global coherency

domain of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_NOT_FOUND The memory resource range specified by BaseAddress and
Length was not allocated with previous calls to
AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory
resource from the global coherency domain of the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

88 September 2003 Version 0.9

RemoveMemorySpace()

Summary
This service removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor.

Prototype
EFI_STATUS
RemoveMemorySpace (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being removed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the memory resource that is being removed.

Description
The RemoveMemorySpace() function converts the memory range specified by BaseAddress
and Length to the memory type EfiGcdMemoryTypeNonExistent. If this conversion is
successful, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
added to the GCD memory space map with previous calls to AddMemorySpace(), then
EFI_NOT_FOUND is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were
allocated from the GCD memory space map with previous calls to AllocateMemorySpace(),
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 89

Status Codes Returned
EFI_SUCCESS The memory resource was removed from the global coherency

domain of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_NOT_FOUND One or more bytes of the memory resource range specified by
BaseAddress and Length was not added with previous
calls to AddMemorySpace().

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length has been allocated with
AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the memory
resource from the global coherency domain of the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

90 September 2003 Version 0.9

GetMemorySpaceDescriptor()

Summary
This service retrieves the descriptor for a memory region containing a specified address.

Prototype
EFI_STATUS
GetMemorySpaceDescriptor (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the
memory region containing BaseAddress. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in "Related Definitions"
below.

Description
The GetMemorySpaceDescriptor() function retrieves the descriptor for the memory region
that contains the address specified by BaseAddress. If a memory region containing
BaseAddress is found, then the descriptor for that memory region is returned in the caller
allocated structure Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If a memory region containing BaseAddress is not present in the GCD memory space map, then
EFI_NOT_FOUND is returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 91

Related Definitions
//***
// EFI_GCD_MEMORY_SPACE_DESCRIPTOR
//***
typedef struct {

EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
UINT64 Capabilities;
UINT64 Attributes;
EFI_GCD_MEMORY_TYPE GcdMemoryType;
EFI_HANDLE ImageHandle;
EFI_HANDLE DeviceHandle;

} EFI_GCD_MEMORY_SPACE_DESCRIPTOR;

BaseAddress

The physical address of the first byte in the memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The number of bytes in the memory region.

Capabilities

The bit mask of attributes that the memory region is capable of supporting. The bit
mask of available attributes is defined in the GetMemoryMap() function
description in the EFI 1.10 Specification.

Attributes

The bit mask of attributes that the memory region is currently using. The bit mask of
available attributes is defined in GetMemoryMap().

GcdMemoryType

Type of the memory region. Type EFI_GCD_MEMORY_TYPE is defined in the
AddMemorySpace() function description.

ImageHandle

The image handle of the agent that allocated the memory resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the memory
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DeviceHandle

The device handle for which the memory resource has been allocated. If
ImageHandle is NULL, then the memory resource is not currently allocated. If this
field is NULL, then the memory resource is not associated with a device that is
described by a device handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

92 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The descriptor for the memory resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND A memory resource range containing BaseAddress was not
found.

Draft for Review Services – DXE Services

Version 0.9 September 2003 93

SetMemorySpaceAttributes()

Summary
This service modifies the attributes for a memory region in the global coherency domain of the
processor.

Prototype
EFI_STATUS
SetMemorySpaceAttributes (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the memory region.

Attributes

The bit mask of attributes to set for the memory region. The bit mask of available
attributes is defined in the GetMemoryMap()function description in the EFI 1.10
Specification.

Description
The SetMemorySpaceAttributes() function modifies the attributes for the memory region
specified by BaseAddress and Length from their current attributes to the attributes specified
by Attributes. If this modification of attributes succeeds, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single
memory descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned. The Attributes bit
mask must be a proper subset of the capabilities bit mask for the specified memory region. The
capabilities bit mask is specified when a memory region is added with AddMemorySpace() and
can be retrieved with GetMemorySpaceDescriptor() or GetMemorySpaceMap().

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

94 September 2003 Version 0.9

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range,
then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource
range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by
BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Draft for Review Services – DXE Services

Version 0.9 September 2003 95

GetMemorySpaceMap()

Summary
Returns a map of the memory resources in the global coherency domain of the processor.

Prototype
EFI_STATUS
GetMemorySpaceMap (

OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR **MemorySpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the MemorySpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
MemorySpaceMap buffer on output.

MemorySpaceMap

A pointer to the array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in
GetMemorySpaceDescriptor(). This buffer is allocated with
AllocatePool(), so it is the caller’s responsibility to free this buffer with a call
to FreePool(). The number of descriptors in MemorySpaceMap is returned in
NumberOfDescriptors. See the EFI 1.10 Specification for definitions of
AllocatePool() and FreePool().

Description
The GetMemorySpaceMap() function retrieves the entire GCD memory space map. If there are
no errors retrieving the GCD memory space map, then the number of descriptors in the GCD
memory space map is returned in NumberOfDescriptors, the array of descriptors from the
GCD memory space map is allocated with AllocatePool(), the descriptors are transferred into
MemorySpaceMap, and EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If MemorySpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate MemorySpaceMap, then
EFI_OUT_OF_RESOURCES is returned.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

96 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The memory space map was returned in the MemorySpaceMap

buffer, and the number of descriptors in MemorySpaceMap was
returned in NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

EFI_INVALID_PARAMETER MemorySpaceMap is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate MemorySpaceMap.

Draft for Review Services – DXE Services

Version 0.9 September 2003 97

AddIoSpace()

Summary
This service adds reserved I/O, or I/O resources to the global coherency domain of the processor.

Prototype
EFI_STATUS
AddIoSpace (

IN EFI_GCD_IO_TYPE GcdIoType,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);

Parameters
GcdIoType

The type of I/O resource being added. Type EFI_GCD_IO_TYPE is defined in
“Related Definitions” below. The only types allowed are
EfiGcdIoTypeReserved and EfiGcdIoTypeIo.

BaseAddress

The physical address that is the start address of the I/O resource being added. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the I/O resource that is being added.

Description
The AddIoSpace() function converts unallocated non-existent I/O ranges to a range of reserved
I/O, or a range of I/O. BaseAddress and Length specify the I/O range, and GcdIoType
specifies the I/O type. If the I/O range is successfully added, then EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeReserved or EfiGcdIoTypeIo, then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If any portion of the I/O range specified by BaseAddress and Length is not of type
EfiGcdIoTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the I/O range specified by BaseAddress and Length was allocated in a prior
call to AllocateIoSpace(), then EFI_ACCESS_DENIED is returned.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

98 September 2003 Version 0.9

If there are not enough system resources available to add the I/O resource to the global coherency
domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_IO_TYPE
//***
typedef enum {

EfiGcdIoTypeNonExistent,
EfiGcdIoTypeReserved,
EfiGcdIoTypeIo,
EfiGcdIoTypeMaximum

} EFI_GCD_IO_TYPE;

EfiGcdIoTypeNonExistent

An I/O region that is visible to the boot processor. However, there are no system
components that are currently decoding this I/O region.

EfiGcdIoTypeReserved

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component, but the I/O region cannot be used to access I/O
devices.

EfiGcdIoTypeIo

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component that is producing I/O ports that can be used to access
I/O devices.

Status Codes Returned
EFI_SUCCESS The I/O resource was added to the global coherency domain of

the processor.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the I/O resource
to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O
resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by
BaseAddress and Length conflicts with an I/O resource
range that was previously added to the global coherency domain
of the processor.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by
BaseAddress and Length was allocated in a prior call to
AllocateIoSpace().

Draft for Review Services – DXE Services

Version 0.9 September 2003 99

AllocateIoSpace()

Summary
This service allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor.

Prototype
EFI_STATUS
AllocateIoSpace (

IN EFI_GCD_ALLOCATE_TYPE AllocateType,
IN EFI_GCD_IO_TYPE GcdIoType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
AllocateMemorySpace().

GcdIoType

The type of I/O resource being allocated. Type EFI_GCD_IO_TYPE is defined in
AddIoSpace(). The only types allowed are EfiGcdIoTypeNonExistent,
EfiGcdIoTypeReserved, and EfiGcdIoTypeIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KB
boundary.

Length

The size in bytes of the I/O resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See "Description" below for more information. On
output the address is set to the base of the I/O resource range that was allocated. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

100 September 2003 Version 0.9

ImageHandle

The image handle of the agent that is allocating the I/O resource. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

DeviceHandle

The device handle for which the I/O resource is being allocated. If the I/O resource
is not being allocated for a device that has an associated device handle, then this
parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The AllocateIoSpace() function searches for an I/O range of type GcdIoType and converts
the discovered I/O range from the unallocated state to the allocated state. The parameters
GcdAllocateType, Alignment, Length, and BaseAddress specify the manner in which
the GCD I/O space map is searched. If an I/O range is found that meets the search criteria, then the
base address of the I/O range is returned in BaseAddress, and EFI_SUCCESS is returned.
ImageHandle and DeviceHandle are used to convert the I/O range from the unallocated state
to the allocated state. ImageHandle identifies the image that is calling AllocateIoSpace(),
and DeviceHandle identifies the device that ImageHandle is managing that requires the I/O
range. DeviceHandle is optional, because the device that ImageHandle is managing might
not have an associated device handle. If an I/O range meeting the search criteria cannot be found,
then EFI_NOT_FOUND is returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD I/O space
map is searched from the lowest address up to the highest address looking for unallocated I/O
ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD I/O space
map is searched from the highest address down to the lowest address looking for unallocated I/O
ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
I/O space map is searched from the lowest address up to BaseAddress looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
I/O space map is searched from BaseAddress down to the lowest address looking for
unallocated I/O ranges of Length bytes beginning on a boundary specified by Alignment that
matches GcdIoType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD I/O space map is
checked to see if the I/O range starting at BaseAddress for Length bytes is of type
GcdIoType, unallocated, and begins on a the boundary specified by Alignment.

Draft for Review Services – DXE Services

Version 0.9 September 2003 101

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeNonExistent, EfiGcdIoTypeReserved, or
EfiGcdIoTypeIo, then EFI_INVALID_PARAMETER is returned.

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The I/O resource was allocated from the global coherency domain

of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the I/O
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The I/O resource request could not be satisfied.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

102 September 2003 Version 0.9

FreeIoSpace()

Summary
This service frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency domain
of the processor.

Prototype
EFI_STATUS
FreeIoSpace (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the I/O resource being freed. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the I/O resource range that is being freed.

Description
The FreeIoSpace() function converts the I/O range specified by BaseAddress and Length
from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not allocated
on previous calls to AllocateIoSpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 103

Status Codes Returned
EFI_SUCCESS The I/O resource was freed from the global coherency domain of

the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O
resource range specified by BaseAddress and Length.

EFI_NOT_FOUND The I/O resource range specified by BaseAddress and
Length was not allocated with previous calls to
AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the I/O resource
from the global coherency domain of the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

104 September 2003 Version 0.9

RemoveIoSpace()

Summary
This service removes reserved I/O, or I/O resources from the global coherency domain of the
processor.

Prototype
EFI_STATUS
RemoveIoSpace (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);

Parameters
BaseAddress

A pointer to a physical address that is the start address of the I/O resource being
removed. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the EFI 1.10 Specification.

Length

The size in bytes of the I/O resource that is being removed.

Description
The RemoveIoSpace() function converts the I/O range specified by BaseAddress and
Length to the I/O type EfiGcdIoTypeNonExistent. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not added to
the GCD I/O space map with previous calls to AddIoSpace(), then EFI_NOT_FOUND is
returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were allocated
from the GCD I/O space map with previous calls to AllocateIoSpace(), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 105

Status Codes Returned
EFI_SUCCESS The I/O resource was removed from the global coherency domain

of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O
resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the I/O resource range specified by
BaseAddress and Length was not added with previous
calls to AddIoSpace().

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by
BaseAddress and Length has been allocated with
AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the I/O
resource from the global coherency domain of the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

106 September 2003 Version 0.9

GetIoSpaceDescriptor()

Summary
This service retrieves the descriptor for an I/O region containing a specified address.

Prototype
EFI_STATUS
GetIoSpaceDescriptor (

IN EFI_PHYSICAL_ADDRESS BaseAddress,
OUT EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of an I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the I/O
region containing BaseAddress. Type EFI_GCD_IO_SPACE_DESCRIPTOR is
defined in “Related Definitions” below.

Description
The GetIoSpaceDescriptor() function retrieves the descriptor for the I/O region that
contains the address specified by BaseAddress. If an I/O region containing BaseAddress is
found, then the descriptor for that I/O region is returned in the caller allocated structure
Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If an I/O region containing BaseAddress is not present in the GCD I/O space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_IO_SPACE_DESCRIPTOR
//***
typedef struct {

EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
EFI_GCD_IO_TYPE GcdIoType;
EFI_HANDLE ImageHandle;
EFI_HANDLE DeviceHandle;

} EFI_GCD_IO_SPACE_DESCRIPTOR;

Draft for Review Services – DXE Services

Version 0.9 September 2003 107

BaseAddress

Physical address of the first byte in the I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

Number of bytes in the I/O region.

GcdIoType

Type of the I/O region. Type EFI_GCD_IO_TYPE is defined in the
AddIoSpace() function description.

ImageHandle

The image handle of the agent that allocated the I/O resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the I/O
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

DeviceHandle

The device handle for which the I/O resource has been allocated. If ImageHandle
is NULL, then the I/O resource is not currently allocated. If this field is NULL, then
the I/O resource is not associated with a device that is described by a device handle.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The descriptor for the I/O resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND An I/O resource range containing BaseAddress was not
found.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

108 September 2003 Version 0.9

GetIoSpaceMap()

Summary
Returns a map of the I/O resources in the global coherency domain of the processor.

Prototype
EFI_STATUS
GetIoSpaceMap (

OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_IO_SPACE_DESCRIPTOR **IoSpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the IoSpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
IoSpaceMap buffer on output.

IoSpaceMap

A pointer to the array of EFI_GCD_IO_SPACE_DESCRIPTORs. Type
EFI_GCD_IO_SPACE_DESCRIPTOR is defined in
GetIoSpaceDescriptor(). This buffer is allocated with AllocatePool(),
so it is the caller’s responsibility to free this buffer with a call to FreePool(). The
number of descriptors in IoSpaceMap is returned in NumberOfDescriptors.

Description
The GetIoSpaceMap() function retrieves the entire GCD I/O space map. If there are no errors
retrieving the GCD I/O space map, then the number of descriptors in the GCD I/O space map is
returned in NumberOfDescriptors, the array of descriptors from the GCD I/O space map is
allocated with AllocatePool(), the descriptors are transferred into IoSpaceMap, and
EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If IoSpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate IoSpaceMap, then EFI_OUT_OF_RESOURCES is
returned.

Draft for Review Services – DXE Services

Version 0.9 September 2003 109

Status Codes Returned
EFI_SUCCESS The I/O space map was returned in the IoSpaceMap buffer, and

the number of descriptors in IoSpaceMap was returned in
NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

EFI_INVALID_PARAMETER IoSpaceMap is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate IoSpaceMap.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

110 September 2003 Version 0.9

Dispatcher Services

Dispatcher Services
The functions that make up the Dispatcher Services are used during preboot to schedule drivers for
execution. A driver may optionally have the Schedule On Request (SOR) flag set in the driver’s
dependency expression. Drivers with this bit set will not be loaded and invoked until they are
explicitly requested to do so. Files loaded from firmware volumes may be placed in the untrusted
state by the Security Architectural Protocol. The services in this section provide this ability to clear
the SOR flag in a DXE driver’s dependency expression and the ability to promote a file from a
firmware volume from the untrusted to the trusted state. The table below lists the Dispatcher
Services.

Table 7.2. Dispatcher Services

Name Type Description

Dispatch Boot Loads and executed DXE drivers from firmware volumes.

Schedule Boot Clears the Schedule on Request (SOR) flag for a component that is
stored in a firmware volume.

Trust Boot Changes the state of a file stored in a firmware volume from the
untrusted state to the trusted state.

ProcessFirmwareVolume Boot Creates a firmware volume handle for a firmware volume that is
present in system memory.

Draft for Review Services – DXE Services

Version 0.9 September 2003 111

Dispatch()

Summary
Loads and executes DXE drivers from firmware volumes.

Prototype
EFI_STATUS
Dispatch (

VOID
);

Description
The Dispatch() function searches for DXE drivers in firmware volumes that have been installed
since the last time the Dispatch() service was called. It then evaluates the dependency
expressions of all the DXE drivers and loads and executes those DXE drivers whose dependency
expression evaluate to TRUE. This service must interact with the Security Architectural Protocol to
authenticate DXE drivers before they are executed. This process is continued until no more DXE
drivers can be executed. If one or more DXE drivers are executed, then EFI_SUCCESS is
returned. If no DXE drivers are executed, EFI_NOT_FOUND is returned.

If an attempt is made to invoke the DXE Dispatcher recursively, then no action is performed by the
Dispatch() service, and EFI_ALREADY_STARTED is returned. In this case, because the DXE
Dispatcher is already running, it is not necessary to invoke it again. All the DXE drivers that can
be dispatched will be dispatched.

Status Codes Returned
EFI_SUCCESS One or more DXE driver were dispatched.

EFI_NOT_FOUND No DXE drivers were dispatched.

EFI_ALREADY_STARTED An attempt is being made to start the DXE Dispatcher recursively.
Thus no action was taken.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

112 September 2003 Version 0.9

Schedule()

Summary
Clears the Schedule on Request (SOR) flag for a component that is stored in a firmware volume.

Prototype
EFI_STATUS
Schedule (

IN EFI_HANLDLE FirmwareVolumeHandle,
IN EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should
have its SOR bit cleared. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The Schedule() function searches the dispatcher queues for the driver specified by
FirmwareVolumeHandle and FileName. If this driver cannot be found, then
EFI_NOT_FOUND is returned. If the driver is found, and its Schedule On Request (SOR) flag is
not set in its dependency expression, then EFI_NOT_FOUND is returned. If the driver is found,
and its SOR bit is set in its dependency expression, then the SOR flag is cleared, and
EFI_SUCCESS is returned. After the SOR flag is cleared, the driver will be dispatched if the
remaining portions of its dependency expression are satisfied. This service does not automatically
invoke the DXE Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE
Dispatcher.

Status Codes Returned
EFI_SUCCESS The DXE driver was found and its SOR bit was cleared.

EFI_NOT_FOUND The DXE driver does not exist, or the DXE driver exists and its
SOR bit is not set.

Draft for Review Services – DXE Services

Version 0.9 September 2003 113

Trust()

Summary
Promotes a file stored in a firmware volume from the untrusted to the trusted state. Only the
Security Architectural Protocol can place a file in the untrusted state. A platform specific
component may choose to use this service to promote a previously untrusted file to the trusted state.

Prototype
EFI_STATUS
Trust (

IN EFI_HANLDLE FirmwareVolumeHandle,
IN EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should be
promoted from the untrusted state to the trusted state. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The Trust() function promotes the file specified by FirmwareVolumeHandle and
FileName from the untrusted state to the trusted state. If this file is not found in the queue of
untrusted files, then EFI_NOT_FOUND is returned. If the driver is found, and its state is changed
to trusted and EFI_SUCCESS is returned. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE Dispatcher.

Status Codes Returned
EFI_SUCCESS The file was found in the untrusted state, and it was promoted to

the trusted state.

EFI_NOT_FOUND The file was not found in the untrusted state.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

114 September 2003 Version 0.9

ProcessFirmwareVolume()

Summary
Creates a firmware volume handle for a firmware volume that is present in system memory.

Prototype
typedef
EFI_STATUS
ProcessFirmwareVolume (

IN VOID *FirmwareVolumeHeader,
IN UINTN Size,
OUT EFI_HANDLE *FirmwareVolumeHandle
);

Parameters
FirmwareVolumeHeader

A pointer to the header of the firmware volume.

Size

The size, in bytes, of the firmware volume.

FirmwareVolumeHandle

On output, a pointer to the created handle. This service will install the
EFI_FIRMWARE_VOLUME_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
for the of the firmware volume that is described by FirmwareVolumeHeader and
Size. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the EFI 1.10 Specification.

Description
The ProcessFirmwareVolume() function examines the contents of the buffer specified by
FirmwareVolumeHeader and Size. If the buffer contains a valid firmware volume, then a
new handle is created, and the EFI_FIRMWARE_VOLUME_PROTOCOL and a memory-mapped
EFI_DEVICE_PATH_PROTOCOL are installed onto the new handle. The new handle is returned
in FirmwareVolumeHandle.

Draft for Review Services – DXE Services

Version 0.9 September 2003 115

Status Codes Returned
EFI_SUCCESS The EFI_FIRMWARE_VOLUME_PROTOCOL and

EFI_DEVICE_PATH_PROTOCOL were installed onto
FirmwareVolumeHandle for the firmware volume
described by FirmwareVolumeHeader and Size.

EFI_VOLUME_CORRUPTED The firmware volume described by
FirmwareVolumeHeader and Size is corrupted.

EFI_OUT_OF_RESOURCES There are not enough system resources available to produce the
EFI_FIRMWARE_VOLUME_PROTOCOL and
EFI_DEVICE_PATH_PROTOCOL for the firmware volume
described by FirmwareVolumeHeader and Size.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

116 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 117

8
Protocols - Device Path Protocol

Introduction
This book contains the definition of the Device Path Protocol and the information needed to
construct and manage device paths in the EFI environment. A device path is constructed and used
by the firmware to convey the location of important devices, such as the boot device and console,
consistent with the software-visible topology of the system. See the EFI 1.10 Specification for
details on the Device Path Protocol.

This DXE CIS uses all the device path nodes from the EFI 1.10 Specification and adds one device
path node type that describes files stored in firmware volumes:

• Firmware Volume File Path Media Device Path

This device path node is used by the updated EFI Boot Service LoadImage() to load EFI images
from firmware volumes. This new capability is used by the DXE Dispatcher to load DXE drivers
from firmware volumes.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

118 September 2003 Version 0.9

Firmware Volume File Path Media Device Path
The table below lists details on the Firmware Volume File Path Media Device Path.

Table 8.1. Firmware Volume File Path Media Device Path

Mnemonic

Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 6 – Firmware Volume File Path.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

NameGuid 4 16 The file name of a file stored in a firmware volume. All file
names in firmware volumes are GUIDs. See the Intel®
Platform Innovation Framework for EFI Firmware Volume
Specification for more details.

Draft for Review

Version 0.9 September 2003 119

9
DXE Foundation

Introduction
The DXE Foundation is designed to be completely portable with no processor, chipset, or platform
dependencies. This lack of dependencies is accomplished by designing in several features:

• The DXE Foundation depends only upon a HOB list for its initial state.
This means that the DXE Foundation does not depend on any services from a previous phase,
so all the prior phases can be unloaded once the HOB list is passed to the DXE Foundation.

• The DXE Foundation does not contain any hard-coded addresses.
This means that the DXE Foundation can be loaded anywhere in physical memory, and it can
function correctly no matter where physical memory or where Firmware Volumes (FVs) are
located in the processor’s physical address space.

• The DXE Foundation does not contain any processor-specific, chipset-specific, or platform-
specific information.
Instead, the DXE Foundation is abstracted from the system hardware through a set of DXE
Architectural Protocol interfaces. These architectural protocol interfaces are produced by a set
of DXE drivers that are invoked by the DXE Dispatcher.

The DXE Foundation must produce the EFI System Table and its associated set of EFI Boot
Services and EFI Runtime Services. The DXE Foundation also contains the DXE Dispatcher
whose main purpose is to discover and execute DXE drivers stored in FVs. The execution order of
DXE drivers is determined by a combination of the optional a priori file and the set of dependency
expressions that are associated with the DXE drivers. The FV file format allows dependency
expressions to be packaged with the executable DXE driver image. DXE drivers utilize a PE/COFF
image format, so the DXE Dispatcher must also contain a PE/COFF loader to load and execute
DXE drivers.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

120 September 2003 Version 0.9

Hand-Off Block (HOB) List
The Hand-Off Block (HOB) list contains all the information that the DXE Foundation requires to
produce its memory-based services. The HOB list contains the following:

• Information on the boot mode and the memory that was allocated in the previous phase.
• A description of the system memory that was initialized by the previous phase along with

information about the firmware devices that were discovered in the previous phase.

The firmware device information includes the system memory locations of the firmware devices
and system memory locations of the firmware volumes that are contained within those firmware
devices. The firmware volumes may contain DXE drivers, and the DXE Dispatcher is responsible
for loading and executing the DXE drivers that are discovered in those firmware volumes.

• The I/O resources and memory-mapped I/O resources that were discovered in the previous
phase.

The HOB list must be treated as a read-only data structure. It conveys the state of the system at the
time the DXE Foundation is started. The DXE Foundation and DXE drivers should never modify
the contents of the HOB list.

The figure below shows an example HOB list. The first HOB list entry is always the Phase
Handoff Information Table (PHIT) HOB that contains the boot mode and a description of the
memory regions used by the previous phase. The rest of the HOB list entries can appear in any
order. This example shows the various HOB types that are supported. The most important ones to
the DXE Foundation are the HOBs that describe system memory and the firmware volumes. A
HOB list is terminated by an end of list HOB. There is one additional HOB type that is not shown.
This is a GUIDed HOB that allows a module from the previous phase to pass private data to a DXE
driver. Only the DXE driver that recognizes the GUID value in the GUIDed HOB will be able to
understand the data in the GUIDed HOB. The DXE Foundation does not consume any GUIDed
HOBs. The HOB entries are all designed to be position independent. This allows the DXE
Foundation to relocate the HOB list to a different location if the DXE Foundation does not like
where the previous phase placed the HOB list in memory.

See HOB Translations later in this chapter for more information on HOB types.

Figure 9.1. HOB List

Draft for Review DXE Foundation

Version 0.9 September 2003 121

DXE Foundation Data Structures
The DXE Foundation produces the EFI System Table, and the EFI System Table is consumed by
every DXE driver and executable image invoked by the DXE Dispatcher and BDS. It contains all
the information required for these components to utilize the services provided by the DXE
Foundation and the services provided by any previously loaded DXE driver. The figure below
shows the various components that are available through the EFI System Table.

System Configuration Table

ACPI Table

EFI
System
Table

EFI Boot Services Table

EFI Runtime Services Table

Variable Services

Real Time Clock Services

Reset Services

Status Code Services

Virtual Memory Services

Task Priority Level Services

Memory Services

Event and Timer Services

Protocol Handler Services

Image Services

Driver Support Services

Global Coherency Domain Services

SMBIOS Table

…
SAL System Table

Input Console

Active Consoles

Output Console

Standard Error Console

Version Information

EFI Specification Version

Firmware Vendor

Firmware Revision

Handle Database Protocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol Interface

Boot Services and Structures

Only available prior to OS runtime

Runtime Services and Structures

Available before and during OS runtime

DXE Services Table

Dispatcher Services

DXE Services Table

HOB List

Figure 9.2. EFI System Table and Related Components

The DXE Foundation produces the EFI Boot Services, EFI Runtime Services, and DXE Services
with the aide of the DXE Architectural Protocols. The EFI System Table also provides access to all
the active console devices in the platform and the set of EFI Configuration Tables. The EFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform.
Today, this includes pointers to tables such as DXE Services, the HOB list, ACPI table, SMBIOS
table, and the SAL System Table. This list may be expanded in the future as new table types are
defined. Also, through the use of the Protocol Handle Services in the EFI Boot Services Table, any
executable image can access the handle database and any of the protocol interfaces that have been
registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, active consoles, EFI Boot
Services, DXE Services, and services provided by boot service DXE drivers are terminated. This

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

122 September 2003 Version 0.9

frees up memory for use by the OS. This only leaves the EFI System Table, EFI Runtime Services
Table, and the EFI Configuration Tables available in the OS runtime environment. There is also
the option of converting all of the EFI Runtime Services from a physical address space to an OS-
specific virtual address space. This address space conversion may be performed only once.

Required DXE Foundation Components
The following figure shows the components that a DXE Foundation must contain. A detailed
description of these components is listed below.

Figure 9.3. DXE Foundation Components

A DXE Foundation must have the following components:

• An implementation of the EFI Boot Services. EFI Boot Services Dependencies describes
which services can be made available based on the HOB list alone and which services depend
on the presence of architectural protocols.

• An implementation of the DXE Services. DXE Services Dependencies describes which
services can be made available based on the HOB list alone and which services depend on the
presence of architectural protocols.

Draft for Review DXE Foundation

Version 0.9 September 2003 123

• A HOB Parser that consumes the HOB list specified by HobStart and initializes the EFI
memory map, GCD memory space map, and GCD I/O space map. See HOB Translations for
details on the translation from HOBs to the maps maintained by the DXE Foundation

• An implementation if a DXE Dispatcher that includes a dependency expression evaluator. See
DXE Dispatcher for a detailed description of this component.

• A Firmware Volume Block driver that produces the
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL for every firmware volume described in the
HOB list. The firmware volumes described in the HOB list are guaranteed to be accessed
memory mapped, so this driver only need to support read-only access to a memory mapped
firmware volume. Firmware Volume Block drivers with additional capabilities may be
produced by DXE drivers. The Firmware Volume driver uses this component so the DXE
Dispatcher can search for a priori files and DXE drivers in firmware volumes. See the Intel®
Platform Innovation Framework for EFI Firmware Volume Block Specification for the
definition of the Firmware Volume Block Protocol.

• A Firmware Volume driver that produces the EFI_FIRMWARE_VOLUME_PROTOCOL for
every firmware volume that described in the HOB list. This component is used by the DXE
Dispatcher to search for a priori files and DXE drivers in firmware volumes. See the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification for the definition of
the Firmware Volume Protocol.

• An instance of the EFI_SECTION_EXTRACTION_PROTOCOL with support for all section
types except GUIDed section types. See the Intel® Platform Innovation Framework for EFI
Firmware Volume Specification for the detailed requirements for this component. This
component is required to extract dependency expression sections and PE32 sections from DXE
driver files stored in firmware volumes.

• An instance of the EFI_DECOMPRESS_PROTOCOL. See the EFI 1.10 Specification for the
detailed requirements for this component. This component is required by the
EFI_SECTION_EXTRACTION_PROTOCOL to read compressed sections from DXE drivers
stored in firmware volumes. It is expected that most DXE drivers will utilize compressed
sections to reduce the size of firmware volumes.

• The DXE Dispatcher uses the Boot Service StartImage() to invoke a DXE driver. The
Boot Services StartImage() and Exit() work together to hand control to a DXE driver
and return control to the DXE Foundation. Since the Boot Service Exit() can be called for
anywhere inside a DXE driver, the Boot Service Exit() is required to rebalance the stack, so
it is in the same state it was in when the Boot Service Start() was called. This is typically
implemented using the processor-specific functions called SetJump() and LongJump().
Since the DXE Foundation must use the Boot Services StartImage() and Exit() to
invoke DXE drivers, the routines SetJump() and LongJump() are required by the DXE
Foundation.

• A PE/COFF loader that supports PE32+ image types. This PE/COFF loader is used to
implement the EFI Boot Service LoadImage(). The DXE Dispatcher uses the Boot Service
LoadImage() to load DXE drivers into system memory. If the processor that the DXE
Foundation is compiled for requires an instruction cache when an image is loaded into system
memory, then an instruction cache flush routine is also required in the DXE Foundation.

• The phase that executed prior to DXE will initialize a stack for the DXE Foundation to use.
This stack is described in the HOB list. If the size of this stack does not meet the DXE

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

124 September 2003 Version 0.9

Foundation’s minimum stack size requirement or the stack is not located in memory region that
is suitable to the DXE Foundation, then the DXE Foundation will have to allocate a new stack
that does meet the minimum size and location requirements. As a result, the DXE Foundation
must contain a stack switching routine for the processor type that the DXE Foundation is
compiled.

Handing Control to DXE Dispatcher
The DXE Foundation must complete the following tasks before handing control to the DXE
Dispatcher. The order that these tasks are performed is implementation dependent.

• Use the HOB list to initialize the GCD memory space map, the GCD I/O space map, and EFI
memory map.

• Allocate the EFI Boot Services Table from EFI_BOOT_SERVICES_MEMORY and initialize
the services that only require system memory to function correctly. The remaining EFI Boot
Services must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the DXE Services Table from EFI_BOOT_SERVICES_MEMORY and initialize the
services that only require system memory to function correctly. The remaining DXE Services
must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the EFI Runtime Services Table from EFI_RUNTIME_SERVICES_MEMORY and
initialize all the services to a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the EFI System Table from EFI_RUNTIME_SERVICES_MEMORY and initialize all
the fields.

• Build an image handle and EFI_LOADED_IMAGE_PROTOCOL instance for the DXE
Foundation itself and add it to the handle database.

• If the HOB list is not in a suitable location in memory, then relocate the HOB list to a more
suitable location.

• Add the DXE Services Table to the EFI Configuration Table.
• Add the HOB list to the EFI Configuration Table.
• Create a notification event for each of the DXE Architectural Protocols. These events will be

signaled when a DXE driver installs a DXE Architectural Protocol in the handle database. The
DXE Foundation must have a notification function associated with each of these events, so the
full complement of EFI Boot Services, EFI Runtime Services, and DXE Services can be
produced. Each of the notification functions should compute the 32-bit CRC of the EFI Boot
Services Table, EFI Runtime Services Table, and the DXE Services Table if the
CalculateCrc32() Boot Services is available.

• Initialize the Section Extraction Protocol driver that must be built into the DXE Foundation.
• Initialize the Decompress Protocol driver that must be built into the DXE Foundation.
• Produce firmware volume handles for the one or more firmware volumes that are described in

the HOB list.

Draft for Review DXE Foundation

Version 0.9 September 2003 125

Once these tasks have been completed, the DXE Foundation is ready to load and execute DXE
drivers stored in firmware volumes. This execution is done by handing control to the DXE
Dispatcher. Once the DXE Dispatcher has finished dispatching all the DXE drivers that it can,
control is then passed to the BDS Architectural Protocol. If for some reason, any of the DXE
Architectural Protocols have not been produced by the DXE drivers, then the system is in an
unusable state and the DXE Foundation must halt. Otherwise, control is handed to the BDS
Architectural Protocol. The BDS Architectural Protocol is responsible for transferring control to an
operating system or system utility.

DXE Foundation Entry Point

DXE Foundation Entry Point
The only parameter passed to the DXE Foundation is a pointer to the HOB list. The DXE
Foundation and all the DXE drivers must treat the HOB list as read-only data.

The function DXE_ENTRY_POINT is the main entry point to the DXE Foundation.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

126 September 2003 Version 0.9

DXE_ENTRY_POINT

Summary
This function is the main entry point to the DXE Foundation.

Prototype
typedef
VOID
(EFIAPI *DXE_ENTRY_POINT) (

IN VOID *HobStart
);

Parameters
HobStart

A pointer to the HOB list.

Description
This function is the entry point to the DXE Foundation. The PEI phase, which executes just before
DXE, is responsible for loading and invoking the DXE Foundation in system memory. The only
parameter that is passed to the DXE Foundation is HobStart. This parameter is a pointer to the
HOB list that describes the system state at the hand-off to the DXE Foundation. At a minimum,
this system state must include the following:

• PHIT HOB
• CPU HOB
• Description of system memory
• Description of one or more firmware volumes

The DXE Foundation is also guaranteed that only one processor is running and that the processor is
running with interrupts disabled. The implementation of the DXE Foundation must not make any
assumptions about where the DXE Foundation will be loaded or where the stack is located. In
general, the DXE Foundation should make as few assumptions about the state of the system as
possible. This lack of assumptions will allow the DXE Foundation to be portable to the widest
variety of system architectures.

Draft for Review DXE Foundation

Version 0.9 September 2003 127

Dependencies

EFI Boot Services Table

EFI Boot Services Dependencies
The table below lists all the EFI Boot Services and the components upon which each of these
services depend. The topics that follow describe what responsibilities the DXE Foundation has in
producing the services that depend on the presence of DXE Architectural Protocols.

Table 9.1. Boot Service Dependencies

Name Dependency

CreateEvent HOB list

CloseEvent HOB list

SignalEvent HOB list

WaitForEvent HOB list

CheckEvent HOB list

SetTimer Timer Architectural Protocol

RaiseTPL CPU Architectural Protocol

RestoreTPL CPU Architectural Protocol

AllocatePages HOB list

FreePages HOB list

GetMemoryMap HOB list

AllocatePool HOB list

FreePool HOB list

InstallProtocolInterface HOB list

UninstallProtocolInterface HOB list

ReinstallProtocolInterface HOB list

RegisterProtocolNotify HOB list

LocateHandle HOB list

HandleProtocol HOB list

LocateDevicePath HOB list

OpenProtocol HOB list

CloseProtocol HOB list

OpenProtocolInformation HOB list

ConnectController HOB list

DisconnectController HOB list

ProtocolsPerHandle HOB list

LocateHandleBuffer HOB list

LocateProtocol HOB list

InstallMultipleProtocolInterfaces HOB list

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

128 September 2003 Version 0.9

Name Dependency

UninstallMultipleProtocolInterfaces HOB list

LoadImage HOB list

StartImage HOB list

UnloadImage HOB list

EFI_IMAGE_ENTRY_POINT HOB list

Exit HOB list

ExitBootServices HOB list

SetWatchDogTimer Watchdog Architectural Protocol

Stall Metronome Architectural Protocol

Timer Architectural Protocol

CopyMem HOB list

SetMem HOB list

GetNextMonotonicCount Monotonic Counter Architectural Protocol

InstallConfigurationTable HOB list

CalculateCrc32 Runtime Architectural Protocol

SetTimer()
When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been
installed, then the Boot Service SetTimer() can be made available. The DXE Foundation can
use the services of the EFI_TIMER_ARCH_PROTOCOL to initialize and hook a heartbeat timer
interrupt for the DXE Foundation. The DXE Foundation can use this heartbeat timer interrupt to
determine when to signal on-shot and periodic timer events. This service may be called before the
EFI_TIMER_ARCH_PROTOCOL is installed. However, since a heartbeat timer is not running yet,
time is essentially frozen at zero. This means that no periodic or one-shot timer events will fire
until the EFI_TIMER_ARCH_PROTOCOL is installed.

RaiseTPL()
The DXE Foundation must produce the Boot Service RaiseTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RaiseTPL() can be made available. When an attempt is made to
raise the TPL level to EFI_TPL_HIGH_LEVEL or higher, then the DXE Foundation should use
the services of the EFI_CPU_ARCH_PROTOCOL to disable interrupts.

Draft for Review DXE Foundation

Version 0.9 September 2003 129

RestoreTPL()
The DXE Foundation must produce the Boot Service RestoreTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RestoreTPL() can be made available. When an attempt is made to
restore the TPL level to level below EFI_TPL_HIGH_LEVEL, then the DXE Foundation should
use the services of the EFI_CPU_ARCH_PROTOCOL to enable interrupts.

SetWatchdogTimer()
When the DXE Foundation is notified that the EFI_WATCHDOG_ARCH_PROTOCOL has been
installed, then the Boot Service SetWatchdogTimer() can be made available. The DXE
Foundation can use the services of the EFI_WATCHDOG_TIMER_ARCH_PROTOCOL to set the
amount of time before the system’s watchdog timer will expire.

Stall()
When the DXE Foundation is notified that the EFI_METRONOME_ARCH_PROTOCOL has been
installed, the DXE Foundation can produce a very simple version of the Boot Service Stall().
The granularity of the Boot Service Stall() will be based on the period of the
EFI_METRONOME_ARCH_PROTOCOL.

When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been
installed, the DXE Foundation can possibly produce a more accurate version of the Boot Service
Stall(). This all depends on the periods of the EFI_METRONOME_ARCH_PROTOCOL and the
period of the EFI_TIMER_ARCH_PROTOCOL. The DXE Foundation should produce the Boot
Service Stall() using the most accurate time base available.

GetNextMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Boot Service GetNextMonotonicCount() is available. The DXE
driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is responsible for
directly updating the GetNextMonotonicCount field of the EFI Boot Services Table. The
DXE Foundation is only responsible for updating the 32-bit CRC of the EFI Boot Services Table.

CalculateCrc32()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Boot Service CalculateCrc32() is available. The DXE driver that produces
the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
CalculateCrc32 field of the EFI Boot Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the EFI Boot Services Table.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

130 September 2003 Version 0.9

EFI Runtime Services Table

EFI Runtime Services Dependencies
The table below lists all the EFI Runtime Services and the components upon which each of these
services depend. The topics that follow describe what responsibilities the DXE Foundation has in
producing the services that depend on the presence of DXE Architectural Protocols.

Table 9.2. Runtime Service Dependencies

Name Dependency

GetVariable Variable Architectural Protocol

GetNextVariableName Variable Architectural Protocol

SetVariable Variable Architectural Protocol / Variable Write Architectural Protocol

GetTime Real Time Clock Architectural Protocol

SetTime Real Time Clock Architectural Protocol

GetWakeupTime Real Time Clock Architectural Protocol

SetWakeupTime Real Time Clock Architectural Protocol

SetVirtualAddressMap Runtime Architectural Protocol

ConvertPointer Runtime Architectural Protocol

ResetSystem Reset Architectural Protocol

GetNextHighMonotonicCount Monotonic Counter Architectural Protocol

ReportStatusCode Status Code Architectural Protocol

GetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the GetVariable
field of the EFI Runtime Services Table. The DXE Foundation is only responsible for updating the
32-bit CRC of the EFI Runtime Services Table.

GetNextVariableName()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetNextVariableName() is available. The DXE driver
that produces the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the
GetNextVariableName field of the EFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

SetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the SetVariable
field of the EFI Runtime Services Table. The DXE Foundation is only responsible for updating the

Draft for Review DXE Foundation

Version 0.9 September 2003 131

32-bit CRC of the EFI Runtime Services Table. The EFI_VARIABLE_ARCH_PROTOCOL is
required to provide read-only access to all environment variables and write access to volatile
environment variables.

When the DXE Foundation is notified that the EFI_VARIABLE_WRITE_ARCH_PROTOCOL has
been installed, then write access to nonvolatile environment variables will also be available. If an
attempt is made to call this function for a nonvolatile environment variable prior to the installation
of EFI_VARIABLE_WRITE_ARCH_PROTOCOL, then EFI_NOT_AVAILABLE_YET must be
returned. This allows for flexibility in the design and implementation of the variables services in a
platform such that read access to environment variables can be provided very early in the DXE
phase and write access to nonvolatile environment variables can be provided later in the DXE
phase.

GetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL
has been installed, then the Runtime Service GetTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the GetTime field of the EFI Runtime Services Table. The DXE Foundation is only responsible
for updating the 32-bit CRC of the EFI Runtime Services Table.

SetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL
has been installed, then the Runtime Service SetTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the SetTime field of the EFI Runtime Services Table. The DXE Foundation is only responsible
for updating the 32-bit CRC of the EFI Runtime Services Table.

GetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL
has been installed, then the Runtime Service GetWakeupTime() is available. The DXE driver
that produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly
updating the GetWakeupTime field of the EFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

SetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL
has been installed, then the Runtime Service SetWakeupTime() is available. The DXE driver
that produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly
updating the SetWakeupTime field of the EFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

SetVirtualAddressMap()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVirtualAddressMap() is available. The DXE driver

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

132 September 2003 Version 0.9

that produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
SetVirtualAddressMap field of the EFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

ConvertPointer()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service ConvertPointer() is available. The DXE driver that
produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
ConvertPointer field of the EFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

ResetSystem()
When the DXE Foundation is notified that the EFI_RESET_ARCH_PROTOCOL has been
installed, then the Runtime Service ResetSystem() is available. The DXE driver that produces
the EFI_RESET_ARCH_PROTOCOL is responsible for directly updating the Reset field of the
EFI Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit CRC
of the EFI Runtime Services Table.

GetNextHighMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Runtime Service GetNextHighMonotonicCount() is available.
The DXE driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is
responsible for directly updating the GetNextHighMonotonicCount field of the EFI Runtime
Services Table. The DXE Foundation is only responsible for updating the 32-bit CRC of the EFI
Runtime Services Table.

ReportStatusCode()
When the DXE Foundation is notified that the EFI_STATUS_CODE_ARCH_PROTOCOL has been
installed, then the Runtime Service ReportStatusCode() is available. The DXE driver that
produces the EFI_STATUS_CODE_ARCH_PROTOCOL is responsible for directly updating the
ReportStatusCode field of the EFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the EFI Runtime Services Table.

DXE Services Table

DXE Services Dependencies
The table below lists all the DXE Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Draft for Review DXE Foundation

Version 0.9 September 2003 133

Table 9.3. DXE Service Dependencies

Name Dependency

AddMemorySpace HOB list

AllocateMemorySpace HOB list

FreeMemorySpace HOB list

RemoveMemorySpace HOB list

GetMemorySpaceDescriptor CPU Architectural Protocol

SetMemorySpaceAttributes CPU Architectural Protocol

GetMemorySpaceMap CPU Architectural Protocol

AddIoSpace HOB list

AllocateIoSpace HOB list

FreeIoSpace HOB list

RemoveIoSpace HOB list

GetIoSpaceDescriptor HOB list

GetIoSpaceMap HOB list

Schedule HOB list

GetMemorySpaceDescriptor()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceDescriptor() is fully functional. This function is
made available when the memory-based services are initialized. However, the Attributes field
of the EFI_GCD_MEMORY_SPACE_DESCRIPTOR is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

SetMemorySpaceAttributes()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service SetMemorySpaceAttributes() can be made available. The DXE
Foundation can then use the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL to implement the DXE Service
SetMemorySpaceAttributes().

GetMemorySpaceMap()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceMap() is fully functional. This function is made
available when the memory-based services are initialized. However, the Attributes field of the
array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

134 September 2003 Version 0.9

HOB Translations

HOB Translations Overview
The following topics describe how the DXE Foundation should interpret the contents of the HOB
list to initialize the GCD memory space map, GCD I/O space map, and EFI memory map. After all
of the HOBs have been parsed, the Boot Service GetMemoryMap() and the DXE Services
GetMemorySpaceMap() and GetIoSpaceMap() should reflect the memory resources, I/O
resources, and logical memory allocations described in the HOB list.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
detailed information on HOBs.

PHIT HOB
The Phase Handoff Information Table (PHIT) HOB describes a region of tested system memory.
This region of memory contains the following:

• HOB list
• Some amount of free memory
• Potentially some logical memory allocations

The PHIT HOB is used by the DXE Foundation to determine the size of the HOB list so that the
DXE Foundation can relocate the HOB list to a new location in system memory. The base address
of the HOB list is passed to the DXE Foundation in the parameter HobStart, and the PHIT HOB
field EfiFreeMemoryBottom specifies the end of the HOB list.

Since the PHIT HOB may contain some of amount of free memory, the DXE Foundation may use
this free memory region in its early initialization phase until the full complement of EFI memory
services are available.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
the definition of this HOB type.

CPU HOB
The CPU HOB contains the field SizeOfMemorySpaceMap . This field is used to initialize the
GCD memory space map. The SizeOfMemorySpaceMap field defines the number of address
bits that the processor can use to address memory resources. The DXE Foundation must create the
primordial GCD memory space map entry of type EfiGcdMemoryTypeNonExistent for the
region from 0 to (1 << SizeOfMemorySpaceMap). All future GCD memory space
operations must be performed within this memory region.

The CPU HOB also contains the field SizeOfIoSpaceMap . This field is used to initialize the
GCD I/O space map. The SizeOfIoSpaceMap field defines the number of address bits that the
processor can use to address I/O resources. The DXE Foundation must create the primordial GCD
I/O space map entry of type EfiGcdIoTypeNonExistent for the region from 0 to (1 <<
SizeOfIoSpaceMap). All future GCD I/O space operations must be performed within this I/O
region.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
the definition of this HOB type.

Draft for Review DXE Foundation

Version 0.9 September 2003 135

Resource Descriptor HOBs
The DXE Foundation must traverse the HOB list looking for Resource Descriptor HOBs. These
HOBs describe memory and I/O resources that are visible to the processor. All of the resource
ranges described in these HOBs must fall in the memory and I/O ranges initialized in the GCD
maps based on the contents of the CPU HOB. The DXE Foundation will use the DXE Services
AddMemorySpace() and AddIoSpace() to register these memory and I/O resources in the
GCD maps.

The Owner field of the Resource Descriptor HOB is ignored by the DXE Foundation. The
ResourceType field and ResourceAttribute fields are used to determine the GCD
memory type or GCD I/O type of the resource. The table below shows this mapping. The resource
range is specified by the PhysicalStart and ResourceLength fields of the Resource
Descriptor HOB.

The ResourceAttribute field also contains the caching capabilities of memory regions. If a
memory region is being added to the GCD memory space map, then the ResourceAttribute
field will be used to initialize the supported caching capabilities. The ResourceAttribute
field is also be used to further qualify memory regions. For example, a system memory region
cannot be added to the EFI memory map if it is read protected. However, it is legal to add a
firmware device memory region that is write-protected if the firmware device is a ROM.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
the definition of this HOB type.

Table 9.4. Resource Descriptor HOB to GCD Type Mapping

Resource Descriptor HOB GCD Map

Resource Type Attributes Memory Type I/O Type

System Memory Present Reserved

System Memory Present AND Initialized Reserved

System Memory Present AND Initialized AND
Tested

System Memory

Memory-Mapped I/O Memory Mapped I/O

Firmware Device Memory Mapped I/O

Memory-Mapped I/O Port Reserved

Memory Reserved Reserved

I/O I/O

I/O Reserved Reserved

Firmware Volume HOBs
The DXE Foundation must traverse the HOB list for Firmware Volume HOBs. When the DXE
Foundation discovers a Firmware Volume HOB, a new handle must be created in the handle
database, and the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL and the
EFI_FIRMWARE_VOLUME_PROTOCOL must be installed on that handle. The BaseAddress
and Length fields of the Firmware Volume HOB specific the memory range that the firmware

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

136 September 2003 Version 0.9

volume consumes. The DXE Service AllocateMemorySpace() is used to allocate the
memory regions described in the Firmware Volume HOBs to the DXE Foundation. The EFI Boot
Service InstallProtocolInterface() is used to create new handles and install protocol
interfaces.

See the following specifications for code definitions:

• Firmware Volume HOB type: Intel® Platform Innovation Framework for EFI Hand-Off Block
(HOB) Specification

• Firmware Volume Block Protocol: Intel® Platform Innovation Framework for EFI Firmware
Volume Block Specification

• Firmware Volume Protocol: Intel® Platform Innovation Framework for EFI Firmware Volume
Specification

Memory Allocation HOBs
Memory Allocation HOBs describe logical memory allocations that occurred prior to the DXE
phase. The DXE Foundation must parse the HOB list for this HOB type. When a HOB of this type
is discovered, the GCD memory space map must be updated with a call to the DXE Service
AllocateMemorySpace(). In addition, the EFI memory map must be updated with logical
allocation described by the MemoryType, MemoryBaseAddress, and MemoryLength fields
of the Memory Allocation HOB.

Once the DXE Foundation has parsed all of the Memory Allocation HOBs, all of the unallocated
system memory regions in the GCD memory space map must be allocated to the DXE Foundation
with the DXE Service AllocateMemorySpace(). In addition, those same memory regions
must be added to the EFI memory map so those memory regions can be allocated and freed using
the Boot Services AllocatePages(), AllocatePool(), FreePages(), and
FreePool().

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
the definition of this HOB type.

GUID Extension HOBs
The DXE Foundation does not consume any GUID Extension HOBs. The HOB parser in the DXE
Foundation will skip HOBs of this type. GUID Extension HOBs contain private data that is being
passed from the previous execution phase to a specific DXE driver. DXE drivers may choose to
parse the HOB list for GUID Extension HOBs.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
the definition of this HOB type.

Draft for Review

Version 0.9 September 2003 137

10
DXE Dispatcher

Introduction
After the DXE Foundation is initialized, control is handed to the DXE Dispatcher. The DXE
Dispatcher examines every firmware volume that is present in the system. Firmware volumes are
either declared by HOBs, or they are declared by DXE drivers. For the DXE Dispatcher to run, at
least one firmware volume must be declared by a HOB.

The DXE Dispatcher is responsible for loading and invoking DXE drivers found in firmware
volumes. Some DXE drivers may depend on the services produced by other DXE drivers, so the
DXE Dispatcher is also required to execute the DXE drivers in the correct order. The DXE drivers
may also be produced by a variety of different vendors, so the DXE drivers must describe the
services they depend upon. The DXE dispatcher must evaluate these dependencies to determine a
valid order to execute the DXE drivers. Some vendors may wish to specify a fixed execution order
for some or all of the DXE drivers in a firmware volume, so the DXE dispatcher must support this
requirement.

In addition, the DXE Dispatcher must support the ability to load “emergency patch” drivers. These
drivers would be added to the firmware volume to address an issue that was not know at the time
the original firmware was built. These DXE drivers would be loaded just before or just after an
existing DXE driver.

Finally, the DXE Dispatcher must be flexible enough to support a variety of platform specific
security policies for loading and executing DXE drivers from firmware volumes. Some platforms
may choose to run DXE drivers with no security checks, and others may choose to check the
validity of a firmware volume before it is used, and other may choose to check the validity of every
DXE driver in a firmware volume before it is executed.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

138 September 2003 Version 0.9

Requirements
The DXE Dispatcher must meet the following requirement:

• Support fixed execution order of DXE drivers. This fixed execution order is specified in an
a priori file in the firmware volume.

• Determine DXE driver execution order based on each driver’s dependencies. A DXE
driver that is stored in a firmware volume may optionally contain a dependency expression
section. This section specifies the protocols that the DXE driver requires to execute.

• Support “emergency patch” DXE drivers. The dependency expressions are flexible enough
to describe the protocols that a DXE drivers may require. In addition, the dependency
expression can declare that the DXE driver is to be loaded and executed immediately before or
immediately after a different DXE driver.

• Support platform specific security policies for DXE driver execution. The DXE Dispatcher
is required to use the services of the Security Architecture Protocol every time a firmware
volume is discovered and every time a DXE driver is loaded.

When a new firmware volume is discovered, it is first authenticated with the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all firmware volumes. Then, a search is made for the a priori file. The a priori file has a fixed file
name, and it contains the list of DXE drivers that should be loaded and executed first. There can be
at most one a priori file per firmware volume, and it is legal to have zero a priori files in a
firmware volume. Once the DXE drivers from the a priori file have been loaded and executed, the
dependency expressions of the remaining DXE drivers in the firmware volumes are evaluated to
determine the order that they will be loaded and executed. The a priori file provides a strongly
ordered list of DXE drivers that are not required to use dependency expressions. The dependency
expressions provide a weakly ordered execution of the remaining DXE drivers. Before each DXE
driver is executed, it must be authenticated through the Security Architectural Protocol. The
Security Architectural Protocol provides the platform-specific policy for validating all DXE drivers.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the DXE
drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate to TRUE
have been loaded and executed. The BDS Architectural Protocol is responsible for establishing the
console devices and attempting the boot of operating systems. As the console devices are
established and access to boot devices is established, additional firmware volumes may be
discovered. If the BDS Architectural Protocol is unable to start a console device or gain access to a
boot device, it will reinvoke the DXE Dispatcher. This will allow the DXE Dispatcher to load and
execute DXE drivers from firmware volumes that have been discovered since the last time the DXE
Dispatcher was invoked. Once the DXE Dispatcher has loaded and executed all the DXE drivers it
can, control is once again returned to the BDS Architectural Protocol to continue the OS boot
process.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 139

The a priori File
The a priori file is a special file that may be present in a firmware volume. The rule is that there
may be at most one a priori file per firmware volume present in a platform. The a priori file has a
known GUID file name, so the DXE Dispatcher can always find the a priori file if it is present.
Every time the DXE Dispatcher discovers a firmware volume, it first looks for the a priori file.
The a priori file contains the list of DXE drivers from that firmware volume that should be loaded
and executed before any other DXE drivers are discovered. The DXE drivers listed in the a priori
file are executed in the order that they appear. If any of those DXE drivers have an associated
dependency expression, then those dependency expressions are ignored. The a priori file provides
a deterministic execution order of DXE drivers. DXE drivers that are executed solely based on
their dependency expression are weakly ordered. This means that the execution order is not
completely deterministic between boots or between platforms. There are cases where a
deterministic execution order is required. One example would be to list the DXE drivers required
to debug the rest of the DXE phase in the a priori file. These DXE drivers that provide debug
services may have been loaded much later if only their dependency expressions were considered.
By loading them earlier, more of the DXE Foundation and DXE drivers can be debugged. Another
example is to use the a priori file to eliminate the need for dependency expressions. Some
embedded platforms may only require a few DXE drivers with a highly deterministic execution
order. The a priori file can provide this ordering, and none of the DXE drivers would require
dependency expressions. The dependency expressions do have some amount of size overhead, so
this method may reduce the size of firmware images. The main purpose of the a priori file is to
provide a greater degree of flexibility in the firmware design of a platform.

See the next topic for the GUID definition of the a priori file, which is the file name that is stored
in a firmware volume.

The a priori file contains the file names of DXE drivers that are stored in the same firmware
volume as the a priori file. File names in firmware volumes are GUIDs, so the a priori file is
simply a list of byte-packed values of type EFI_GUID. Type EFI_GUID is defined in the EFI
1.10 Specification. The DXE Dispatcher reads the list of EFI_GUIDs from the a priori file. Each
EFI_GUID is used to load and execute the DXE driver with that GUID file name. If the DXE
driver specified by the GUID file name is not found in the firmware volume, then the file is
skipped. If the a priori file is not en even multiple of EFI_GUIDs in length, then the DXE driver
specified by the last EFI_GUID in the a priori file is skipped.

After all of the DXE drivers listed in the a priori file have been loaded and executed, the DXE
Dispatcher searches the firmware volume for any additional DXE drivers and executed them
according to their dependency expressions.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

140 September 2003 Version 0.9

EFI_APRIORI_GUID
The following GUID definition is the file name of the a priori file that is stored in a firmware
volume. This file must be of type EFI_FV_FILETYPE_FREEFORM and must contain a single
section of type EFI_SECTION_RAW. See the following specifications for details on firmware
volumes, firmware file types, and firmware file section types:

• Intel® Platform Innovation Framework for EFI Firmware File System Specification
• Intel® Platform Innovation Framework for EFI Firmware Volume Specification

GUID
#define EFI_APRIORI_GUID \

{0xfc510ee7,0xffdc,0x11d4,0xbd,0x41,0x0,0x80,0xc7,0x3c,0x88,0x81}

Dependency Expressions

Dependency Expressions Overview
A DXE driver is stored in a firmware volume as a file with one or more sections. One of the
sections must be a PE32+ image. If a DXE driver has a dependency expression, then it is stored in
a dependency section. A DXE driver may contain additional sections for compression and security
wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In addition, the
DXE Dispatcher can look up the dependency expression for a DXE driver by looking for a
dependency section in a DXE driver file. The dependency section contains a section header
followed by the actual dependency expression that is composed of a packed byte stream of opcodes
and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve space.
In addition, they are designed to be simple and quick to evaluate to reduce execution overhead.
These two goals are met by designing a small, stack based, instruction set to encode the dependency
expressions. The DXE Dispatcher must implement an interpreter for this instruction set in order to
evaluate dependency expressions. The instruction set is defined in the following topics.

See Dependency Expression Grammar for an example BNF grammar for a dependency expression
compiler. There are many possible methods of specifying the dependency expression for a DXE
driver. Dependency Expression Grammar demonstrates one possible design for a tool that can be
used to help build DXE driver images.

Dependency Expression Instruction Set
The following topics describe each of the dependency expression opcodes in detail. Information
includes a description of the instruction functionality, binary encoding, and any limitations or
unique behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that
matches the type EFI_GUID that is described in the EFI 1.10 Specification. These GUIDs
represent protocols that are produced by DXE drivers and the file names of DXE drivers stored in
firmware volumes. A dependency expression is a packed byte stream of opcodes and operands. As

Draft for Review DXE Dispatcher

Version 0.9 September 2003 141

a result, some of the GUID operands will not be aligned on natural boundaries. Care must be taken
on processor architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped
off the stack to perform an operation. After the last operation is performed, the value on the top of
the stack represents the evaluation of the entire dependency expression. If a push operation causes
a stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions
about the maximum stack size it will support. Instead, it should be designed to grow the
dependency expression stack as required. In addition, DXE drivers that contain dependency
expressions should make an effort to keep their dependency expressions as small as possible to help
reduce the size of the DXE driver.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

If an instruction encoding extends beyond the end of the dependency section, then the entire
dependency expression evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

The table below is a summary of the opcodes that are used to build dependency expressions. The
following topics describe each of these instructions in detail.

Table 10.1. Dependency Expression Opcode Summary

Opcode Description

0x00 BEFORE <File Name GUID>

0x01 AFTER <File Name GUID>

0x02 PUSH <Protocol GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

142 September 2003 Version 0.9

BEFORE

SYNTAX:
BEFORE <File Name GUID>

DESCRIPTION:
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just before the DXE driver with the file name specified by GUID.
This means that as soon as the dependency expression for the DXE driver specified by GUID
evaluates to TRUE, then this DXE driver must be placed in the dispatch queue just before the DXE
driver with the file name specified by GUID.

OPERATION:
None.

The following table defines the BEFORE instruction encoding.

BYTE DESCRIPTION

0 0x00

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the same at
type EFI_GUID.

BEHAVIORS AND RESTRICTIONS:
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 143

AFTER

SYNTAX:
AFTER <File Name GUID>

DESCRIPTION:
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just after the DXE driver with the file name specified by GUID.
This means that as soon as the dependency expression for the DXE driver specified by GUID
evaluates to TRUE, then this DXE driver must be placed in the dispatch queue just after the DXE
Driver with the file name specified by GUID.

OPERATION:
None.

The following table defines the AFTER instruction encoding.

BYTE DESCRIPTION

0 0x01

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the same at
type EFI_GUID.

BEHAVIORS AND RESTRICTIONS:
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

144 September 2003 Version 0.9

PUSH

SYNTAX:
PUSH <Protocol GUID>

DESCRIPTION:
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE
is pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocateProtocol().

OPERATION:
Status = gBS->LocateProtocol (GUID, NULL, &Interface);
if (EFI_ERROR (Status)) {

PUSH FALSE;
} Else {

PUSH TRUE;
}

The following table defines the PUSH instruction encoding.

BYTE DESCRIPTION

0 0x02

1..16 A 16-byte GUID that represents a protocol that is produced by a different DXE driver.
The format is the same at type EFI_GUID.

BEHAVIORS AND RESTRICTIONS:
None.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 145

AND

SYNTAX:
AND

DESCRIPTION:
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

OPERATION:
Operand1 <= POP Boolean stack element

Operand2 <= POP Boolean stack element

Result <= Operand1 AND Operand2

PUSH Result

The following table defines the AND instruction encoding.

BYTE DESCRIPTION

0 0x03.

BEHAVIORS AND RESTRICTIONS:
None.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

146 September 2003 Version 0.9

OR

SYNTAX:
OR

DESCRIPTION:
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

OPERATION:
Operand1 <= POP Boolean stack element

Operand2 <= POP Boolean stack element

Result <= Operand1 OR Operand2

PUSH Result

The following table defines the OR instruction encoding.

BYTE DESCRIPTION

0 0x04.

BEHAVIORS AND RESTRICTIONS:
None.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 147

NOT

SYNTAX:
NOT

DESCRIPTION:
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

OPERATION:
Operand <= POP Boolean stack element

Result <= NOT Operand1

PUSH Result

The following table defines the NOT instruction encoding.

BYTE DESCRIPTION

0 0x05.

BEHAVIORS AND RESTRICTIONS:
None.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

148 September 2003 Version 0.9

TRUE

SYNTAX:
TRUE

DESCRIPTION:
Pushes a Boolean TRUE onto the stack.

OPERATION:
PUSH TRUE

The following table defines the TRUE instruction encoding.

BYTE DESCRIPTION

0 0x06.

BEHAVIORS AND RESTRICTIONS:
None.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 149

FALSE

SYNTAX:
FALSE

DESCRIPTION:
Pushes a Boolean FALSE onto the stack.

OPERATION:
PUSH FALSE

The following table defines the FALSE instruction encoding.

BYTE DESCRIPTION

0 0x07.

BEHAVIORS AND RESTRICTIONS:
None.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

150 September 2003 Version 0.9

END

SYNTAX:
END

DESCRIPTION:
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

OPERATION:
POP Result

RETURN Result

The following table defines the END instruction encoding.

BYTE DESCRIPTION

0 0x08.

BEHAVIORS AND RESTRICTIONS:
This opcode must be the last one in a dependency expression.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 151

SOR

SYNTAX:
SOR

DESCRIPTION:
Indicates that the DXE driver is to remain on the Schedule on Request (SOR) queue until the DXE
Service Schedule() is called for this DXE. The dependency expression evaluator treats this
operation like a No Operation (NOP).

OPERATION:
None.

The following table defines the SOR instruction encoding.

BYTE DESCRIPTION

0 0x09.

BEHAVIORS AND RESTRICTIONS:
• If this instruction is present in a dependency expression, it must be the first instruction in the

expression. If it appears in any other location in the dependency expression, then the
dependency expression is evaluated to FALSE.

• This instruction must be followed by a valid dependency expression. If this instruction is the
last instruction or it is followed immediately by an END instruction, then the dependency
expression is evaluated to FALSE.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

152 September 2003 Version 0.9

Dependency Expression with No Dependencies
A DXE driver that does not have any dependencies must have a dependency expression that
evaluates to TRUE with no dependencies on any protocol GUIDs or file name GUIDs. The DXE
Dispatcher will queue all the DXE drivers of this type immediately after the a priori file has been
processed.

The following code example shows the dependency expression for a DXE driver that does not have
any dependencies using the BNF grammar listed in Dependency Expression Grammar. This is
followed by the 2-byte dependency expression that is encoded using the instruction set described in
Dependency Expression Instruction Set.
//
// Source
//
TRUE
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 06 TRUE
0x01 : 08 END

Empty Dependency Expressions
If a DXE driver file does not contain a dependency section, then the DXE driver has an empty
dependency expression. The DXE Foundation must support DXE driver and EFI drivers that
conform to the EFI 1.10 Specification. These EFI drivers assume that all the EFI Boot Services and
EFI Runtime Services are available. If an EFI driver is added to a firmware volume, then the EFI
driver will have an empty dependency expression, and it should not be loaded and executed by the
DXE Dispatcher until all the EFI Boot Services and EFI Runtime Services are available. The DXE
Foundation cannot guarantee that this condition is true until all of the DXE Architectural Protocols
have been installed.

From the DXE Dispatcher’s perspective, DXE drivers without dependency expressions cannot be
loaded until all of the DXE Architectural Protocols have been installed. This is equivalent to an
implied dependency expression of all the GUIDs of the architectural protocols ANDed together.
This implied dependency expression is shown below. The use of empty dependency expressions
may also save space, because DXE drivers that require all the EFI Boot Services and EFI Runtime
Services to be present can simply remove the dependency section from the DXE driver file.

The code example below shows the dependency expression that is implied by an empty dependency
expression using the BNF grammar listed in Dependency Expression Grammar. It also shows the
dependency expression after it has been encoded using the instruction set described in Dependency
Expression Instruction Set. This fairly complex dependency expression is encoded into a
dependency expression that is 216 bytes long. Typical dependency expressions will contain 2 or 3
terms, so those dependency expressions will typically be less than 60 bytes long.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 153

//
// Source
//
EFI_BDS_ARCH_PROTOCOL_GUID AND
EFI_CPU_ARCH_PROTOCOL_GUID AND
EFI_METRONOME_ARCH_PROTOCOL_GUID AND
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID AND
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID AND
EFI_RESET_ARCH_PROTOCOL_GUID AND
EFI_RUNTIME_ARCH_PROTOCOL_GUID AND
EFI_SECURITY_ARCH_PROTOCOL_GUID AND
EFI_STATUS_CODE_ARCH_PROTOCOL_GUID AND
EFI_TIMER_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID AND
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : F6 3F 5E 66 CC 46 d4 11 EFI_BDS_ARCH_PROTOCOL_GUID

9A 38 00 90 27 3F C1 4D
0x11 : 02 PUSH
0x12 : B1 CC BA 26 42 6F D4 11 EFI_CPU_ARCH_PROTOCOL_GUID

BC E7 00 80 C7 3C 88 81
0x22 : 03 AND
0x23 : 02 PUSH
0x24 : B2 CC BA 26 42 6F d4 11 EFI_METRONOME_ARCH_PROTOCOL_GUID

BC E7 00 80 C7 3C 88 81
0x34 : 02 PUSH
0x35 : 72 70 A9 1D DC BD 30 4B
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID

99 F1 72 A0 B5 6F FF 2A
0x45 : 03 AND
0x46 : 03 AND
0x47 : 02 PUSH
0x48 : 87 AC CF 27 CC 46 d4 11
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID

9A 38 00 90 27 3F C1 4D

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

154 September 2003 Version 0.9

0x58 : 02 PUSH
0x59 : 88 AC CF 27 CC 46 d4 11 EFI_RESET_ARCH_PROTOCOL_GUID

9A 38 00 90 27 3F C1 4D
0x69 : 03 AND
0x6A : 02 PUSH
0x6B : 53 82 d0 96 83 84 d4 11 EFI_RUNTIME_ARCH_PROTOCOL_GUID

BC F1 00 80 C7 3C 88 81
0x7B : 02 PUSH
0x7C : E3 23 64 A4 17 46 f1 49 EFI_SECURITY_ARCH_PROTOCOL_GUID

B9 FF D1 BF A9 11 58 39
0x8C : 03 AND
0x8D : 03 AND
0x8E : 03 AND
0x8F : 02 PUSH
0x90 : A3 3E 8E D9 39 6F E4 4B EFI_STATUS_CODE_ARCH_PROTOCOL_GUID

82 CE 5A 89 0C CB 2C 95
0xA0 : 02 PUSH
0xA1 : B3 CC BA 26 42 6F D4 11 EFI_TIMER_ARCH_PROTOCOL_GUID

BC E7 00 80 C7 3C 88 81
0xB1 : 03 AND
0xB2 : 02 PUSH
0xB3 : E2 68 56 1E 81 84 D4 11 EFI_VARIABLE_ARCH_PROTOCOL_GUID

BC F1 00 80 C7 3C 88 81
0xC3 : 02 PUSH
0xC4 : 18 F8 41 64 62 63 44 4E EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID

B5 70 7D BA 31 DD 24 53
0xD4 : 03 AND
0xD5 : 03 AND
0xD6 : 03 AND
0xD7 : 02 PUSH
0xD8 : F5 3F 5E 66 CC 46 d4 11 EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID

9A 38 00 90 27 3F C1 4D
0xE8 : 03 AND
0xE9 : 08 END

Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the DXE driver in a simple-to-evaluate form, namely
postfix.

The following is a BNF encoding of this grammar. See Dependency Expression Instruction Set for
definitions of the dependency expressions.

<statement> ::= SOR <expression> END |
BEFORE <guid> END |
AFTER <guid> END |
<expression> END

<expression> ::= PUSH <guid> |
TRUE |
FALSE |
<expression> NOT |
<expression> <expression> OR |
<expression> <expression> AND

Draft for Review DXE Dispatcher

Version 0.9 September 2003 155

DXE Dispatcher State Machine

DXE Dispatcher State Machine
The DXE Dispatcher is responsible for tracking the state of a DXE driver from the time that the
DXE driver is discovered in a firmware volume until the DXE Foundation is terminated with a call
to ExitBootServices(). During this time, each DXE driver may be in one of several different
states. The state machine that the DXE Dispatcher must use to track a DXE driver is shown in the
figure below.

Figure 10.1. DXE Driver States

A DXE driver starts in the “Undiscovered” state, which means that the DXE driver is in a firmware
volume that the DXE Dispatcher does not know about yet. When the DXE Dispatcher discovers a
new firmware volume, any DXE drivers from that firmware volume listed in the a priori file are
immediately loaded and executed. DXE drivers listed in the a priori file are immediately promoted
to the “Scheduled” state. The firmware volume is then searched for DXE drivers that are not listed
in the a priori file. Any DXE drivers found are promoted from the “Undiscovered” to the
“Discovered” state. The dependency expression for each DXE driver is evaluated. If the SOR
opcode is present in a DXE driver’s dependency expression, then the DXE driver is placed in the
“Unrequested” state. If the SOR opcode is not present in the DXE driver’s dependency expression,

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

156 September 2003 Version 0.9

then the DXE driver is placed in the “Dependent” state. Once a DXE driver is in the "Unrequested”
state, it may only be promoted to the “Dependent” state with a call to the DXE Service
Schedule().

Once a DXE Driver is in the “Dependent” state, the DXE Dispatcher will evaluate the DXE
driver’s dependency expression. If the DXE driver does not have a dependency expression, then a
dependency expression of all the architectural protocols ANDed together is assumed for that DXE
driver. If the dependency expression evaluates to FALSE, then the DXE driver stays in the
“Dependent” state. If the dependency expression never evaluates to TRUE, then it will never leave
the “Dependent” state. If the dependency expression evaluates to TRUE, then the DXE driver will
be promoted to the “Scheduled” state.

A DXE driver that is prompted to the “Scheduled” state is added to the end of the queue of other
DXE drivers that have been promoted to the “Scheduled” state. When the DXE driver has reached
the head of the queue, the DXE Dispatcher must use the services of the Security Authentication
Protocol (SAP) to check the authentication status of the DXE Driver. If the Security Authentication
Protocol deems that the DXE Driver violates the security policy of the platform, then the DXE
Driver is placed in the “Untrusted” state. The Security Authentication Protocol can also tell the
DXE Dispatcher that the DXE driver should never be executed and be placed in the “Never
Trusted” state. If a DXE driver is placed in the “Untrusted” state, it can only be promoted back to
the “Scheduled” state with a call to the DXE Service Trust().

Once a DXE driver has reached the head of the scheduled queue, and the DXE driver has passed
the authentication checks of the Security Authentication Protocol, the DXE driver is loaded into
memory with the Boot Service LoadImage(). Control is then passed from the DXE Dispatcher
to the DXE driver with the Boot Service StartImage(). When StartImage() is called for a
DXE driver, that DXE driver is promoted to the “Initializing” state. The DXE driver returns
control to the DXE Dispatcher through the Boot Service Exit(). When a DXE driver has
returned control to the DXE Dispatcher, the DXE driver is in the terminal state called “Initialized.”

The DXE Dispatcher is responsible for draining the queue of DXE drivers in the “Scheduled” state
until the queue is empty. Once the queue is empty, then DXE Dispatcher must evaluate all the
DXE drivers in the "Dependent” state to see if any of them need to be promoted to the “Scheduled”
state. These evaluations need to be performed every time one or more DXE drivers have been
promoted to the “Initialized” state, because those DXE drivers may have produced protocol
interfaces for which the DXE drivers in the "Dependent” state are waiting.

Draft for Review DXE Dispatcher

Version 0.9 September 2003 157

Example Orderings
The order that DXE drivers are loaded and executed by the DXE Dispatcher is a mix of strong and
weak orderings. The strong orderings are specified through a priori files, and the weak orderings
are specified by dependency expressions in DXE drivers. The figure below shows the contents of a
sample firmware volume that contains the following:

• DXE Foundation image
• DXE driver images
• An a priori file

The order that these images appear in the firmware volume is arbitrary. The DXE Foundation and
the DXE Dispatcher must not make any assumptions about the locations of files in firmware
volumes. The a priori file contains the GUID file names of the DXE drivers that are to be loaded
and executed first. The dependency expressions and the protocols that each DXE driver produces is
shown next to each DXE driver image in the firmware volume.

Figure 10.2. Sample Firmware Volume

Based on the contents of the firmware volume in the figure above, the Security Driver, Runtime
Driver, and Variable Driver will always be executed first. This is an example of a strongly ordered
dispatch due to the a priori file. The DXE Dispatcher will then evaluate the dependency

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

158 September 2003 Version 0.9

expressions of the remaining DXE drivers to determine the order that they will be executed. Based
on the dependency expressions and the protocols that each DXE driver produces, there are 30 valid
orderings from which the DXE Dispatcher may choose. The BDS Driver and CPU Driver tie for
the next drivers to be scheduled, because their dependency expressions are simply TRUE. A
dependency expression of TRUE means that the DXE driver does not require any other protocol
interfaces to be executed. The DXE Dispatcher may choose either one of these drivers to be
scheduled first. The Timer Driver, Metronome Driver, and Reset Driver all depend on the
protocols produced by the CPU Driver. Once the CPU Driver has been loaded and executed, the
Timer Driver, Metronome Driver, and Reset Driver may be scheduled in any order. The table
below shows all 30 possible orderings from the sample firmware volume in the figure above. Each
ordering is listed from left to right across the table. A reasonable implementation of a DXE
Dispatcher would consistently produce the same ordering for a given system configuration. If the
configuration of the system is changed in any way (including a order of files stored in a firmware
volume), then a different dispatch ordering may be generated, but this new ordering should be
consistent until the next system configuration change.

Table 10.2. DXE Dispatcher Orderings

Dispatch Order

1 2 3 4 5 6 7 8

1 Security Runtime Variable BDS CPU Timer Metronome Reset

2 Security Runtime Variable BDS CPU Timer Reset Metronome

3 Security Runtime Variable BDS CPU Metronome Timer Reset

4 Security Runtime Variable BDS CPU Metronome Reset Timer

5 Security Runtime Variable BDS CPU Reset Timer Metronome

6 Security Runtime Variable BDS CPU Reset Metronome Timer

7 Security Runtime Variable CPU BDS Timer Metronome Reset

8 Security Runtime Variable CPU BDS Timer Reset Metronome

9 Security Runtime Variable CPU BDS Metronome Timer Reset

10 Security Runtime Variable CPU BDS Metronome Reset Timer

11 Security Runtime Variable CPU BDS Reset Timer Metronome

12 Security Runtime Variable CPU BDS Reset Metronome Timer

13 Security Runtime Variable CPU Timer BDS Metronome Reset

14 Security Runtime Variable CPU Timer BDS Reset Metronome

15 Security Runtime Variable CPU Timer Metronome BDS Reset

16 Security Runtime Variable CPU Timer Metronome Reset BDS

17 Security Runtime Variable CPU Timer Reset BDS Metronome

18 Security Runtime Variable CPU Timer Reset Metronome BDS

19 Security Runtime Variable CPU Metronome Timer BDS Reset

20 Security Runtime Variable CPU Metronome Timer Reset BDS

Draft for Review DXE Dispatcher

Version 0.9 September 2003 159

Dispatch Order

1 2 3 4 5 6 7 8

21 Security Runtime Variable CPU Metronome BDS Timer Reset

22 Security Runtime Variable CPU Metronome BDS Reset Timer

23 Security Runtime Variable CPU Metronome Reset Timer BDS

24 Security Runtime Variable CPU Metronome Reset BDS Timer

25 Security Runtime Variable CPU Reset Timer Metronome BDS

26 Security Runtime Variable CPU Reset Timer BDS Metronome

27 Security Runtime Variable CPU Reset Metronome Timer BDS

28 Security Runtime Variable CPU Reset Metronome BDS Timer

29 Security Runtime Variable CPU Reset BDS Timer Metronome

30 Security Runtime Variable CPU Reset BDS Metronome Timer

Security Considerations
The DXE Dispatcher is required to use the services of the Security Architectural Protocol every
time a firmware volume is discovered and before each DXE driver is executed. Because the
Security Architectural Protocol is produced by a DXE driver, there will be at least one firmware
volume discovered, and one or more DXE drivers loaded and executed before the Security
Architectural Protocol is installed. The DXE Dispatcher should not attempt to use the services of
the Security Architectural Protocol until the Security Architectural Protocol is installed. If a
platform requires the Security Architectural Protocol to be present very early in the DXE phase,
then the a priori file may be used to specify the name of the DXE driver that produces the Security
Architectural Protocol.

The Security Architectural Protocol provides a service to evaluate the authentication status of a
file. This service can also be used to evaluate the authenticate status of a firmware volume. If the
authentication status is good, then no action is taken. If there is a problem with the firmware
volume’s authentication status, then the Security Architectural Protocol may perform a platform
specific action. One option is to force the DXE Dispatcher to ignore the firmware volume so no
DXE drivers will be loaded and executed from it. Another is to log the fact that the DXE
Dispatcher is going to start dispatching DXE driver from a firmware volume with a questionable
authentication status.

The Security Architectural Protocol can also be used to evaluate the authentication status of each
DXE driver discovered in a firmware volume. If the authentication status is good, then no action is
taken. If there is a problem with the DXE driver’s authentication status, then the Security
Architectural Protocol may take a platform-specific action. One possibility is to force the DXE
driver into the “Untrusted” state, so it will not be considered for dispatch until the Boot Service
Trust() is called for that DXE driver. Another possibility is to have the DXE Dispatcher place
the DXE driver in the “Never Trusted” state, so it will never be loaded or executed. Another option
is to log the fact that a DXE driver with a questionable authentication status is about to be loaded
and executed.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

160 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 161

11
DXE Drivers

Introduction
The DXE architecture provides a rich set of extensible services that provides for wide variety of
different system firmware designs. The DXE Foundation provides the generic services required to
locate and execute DXE drivers. The DXE drivers are the components that actually initialize the
platform and provide the services required to boot an EFI-compliant operating system or a set of
EFI-compliant system utilities. There are many possible firmware implementations for any given
platform. Because the DXE Foundation has fixed functionality, all the added value and flexibility
in a firmware design is embodied in the implementation and organization of DXE drivers.

There are two basic classes of DXE drivers:

• Early DXE Drivers
• DXE Drivers that follow the EFI Driver Model

Additional classifications of DXE drivers are also possible.

All DXE drivers may consume the EFI Boot Services, EFI Runtime Services, and DXE Services to
perform their functions. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed. See the
following topics for the DXE Architectural Protocols upon which the services depend:

• EFI Boot Services Dependencies
• EFI Runtime Services Dependencies
• DXE Services Dependencies

Classes of DXE Drivers

Basic

Early DXE Drivers
The first class of DXE drivers are those that execute very early in the DXE phase. The execution
order of these DXE drivers depends on the following:

• The presence and contents of an a priori file
• The evaluation of dependency expressions

These early DXE drivers will typically contain basic services, processor initialization code, chipset
initialization code, and platform initialization code. These early drivers will also typically produce
the DXE Architectural Protocols that are required for the DXE Foundation to produces its full
complement of EFI Boot Services and EFI Runtime Services. To support the fastest possible boot
time, as much initialization should be deferred to the DXE drivers that follow EFI Driver Model
described in the EFI 1.10 Specification.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

162 September 2003 Version 0.9

The early DXE drivers need to be aware that not all of the EFI Boot Services, EFI Runtime
Services, and DXE Services may be available when they execute because not all of the DXE
Architectural Protocols may be been registered yet.

DXE Drivers That Follow the EFI Driver Model
The second class of DXE drivers are those that follow the EFI Driver Model in the EFI 1.10
Specification. These drivers do not touch any hardware resources when they initialize. Instead,
they register a Driver Binding Protocol interface in the handle database. The set of Driver Binding
Protocols are used by the Boot Device Selection (BDS) phase to connect the drivers to the devices
that are required to establish consoles and provide access to boot devices. The DXE drivers that
follow the EFI Driver Model ultimately provide software abstractions for console devices and boot
devices, but only when they are explicitly asked to do so.

The DXE drivers that follow the EFI Driver Model do not need to be concerned with dependency
expressions. These drivers simply register the Driver Binding Protocol in the handle database when
they are executed, and this operation can be performed without the use of any DXE Architectural
Protocols. DXE drivers with empty dependency expressions will not be dispatched by the DXE
Dispatcher until all of the DXE Architectural Protocols have been installed.

Additional

Additional Classifications
DXE drivers can also be classified as the following:

• Boot service drivers
• Runtime drivers

Boot service drivers provide services that are available until the ExitBootServices()
function is called. When ExitBootServices() is called, all the memory used by boot service
drivers is released for use by an operating system.

Runtime drivers provide services that are available before and after ExitBootServices() is
called, including the time that an operating system is running. All of the services in the EFI
Runtime Services Table are produced by runtime drivers.

The DXE Foundation is considered a boot service component, so the DXE Foundation is also
released when ExitBootServices() is called. As a result, runtime drivers may not use any of
the EFI Boot Services, DXE Services, or services produced by boot service drivers after
ExitBootServices() is called.

Draft for Review

Version 0.9 September 2003 163

12
DXE Architectural Protocols

Introduction
The DXE Foundation is abstracted from the platform hardware through a set of architectural
protocols. These protocols function just like other protocols in every way. The only difference is
that these architectural protocols are the protocols that the DXE Foundation itself consumes to
produce the EFI Boot Services, EFI Runtime Services, and DXE Services. DXE drivers that are
loaded from firmware volumes produce the DXE Architectural Protocols. This means that the DXE
Foundation must have enough services to load and start DXE drivers before even a single DXE
driver is executed.

The DXE Foundation is passed a HOB list that must contain a description of some amount of
system memory and at least one firmware volume. The system memory descriptors in the HOB list
are used to initialize the EFI services that require only memory to function correctly. The system is
also guaranteed to be running on only one processor in flat physical mode with interrupts
disabled. The firmware volume is passed to the DXE Dispatcher, and the DXE Dispatcher must
contain a read-only firmware file system driver to search for the a priori file and any DXE drivers
in the firmware volumes. When a driver is discovered that needs to be loaded and executed, the
DXE Dispatcher will use a PE/COFF loader to load and invoke the DXE driver. The early DXE
drivers will produce the DXE Architectural Protocols, so the DXE Foundation can produce the full
complement of EFI Boot Services and EFI Runtime Services.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

164 September 2003 Version 0.9

The figure below shows the HOB list being passed to the DXE Foundation.

Figure 12.1. DXE Architectural Protocols

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 165

The DXE Foundation consumes the services of the DXE Architectural Protocols and produces the
following:

• EFI System Table
• EFI Boot Services Table
• EFI Runtime Services Table
• DXE Services Table

The EFI Boot Services Table and DXE Services Table are allocated from EFI boot services
memory, which means that the EFI Boot Services Table and DXE Services Table are freed when
the OS runtime phase is entered. The EFI System Table and EFI Runtime Services Table are
allocated from EFI runtime services memory, and they persist into the OS runtime phase.

The DXE Architectural Protocols shown on the left of the figure are used to produce the EFI Boot
Services and DXE Services. The DXE Foundation and these protocols will be freed when the
system transitions to the OS runtime phase. The DXE Architectural Protocols shown on the right
are used to produce the EFI Runtime Services. These services will persist in the OS runtime phase.
The Runtime Architectural Protocol in the middle is unique. This protocol provides the services
that are required to transition the runtime services from physical mode to virtual mode under the
direction of an OS. Once this transition is complete, the services of the Runtime Architectural
Protocol can no longer be used. The following topics describe all of the DXE Architectural
Protocols in detail.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

166 September 2003 Version 0.9

Boot Device Selection (BDS) Architectural Protocol

EFI_BDS_ARCH_PROTOCOL

Summary
Transfers control from the DXE phase to an operating system or system utility. This protocol must
be produced by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation.

GUID
#define EFI_BDS_ARCH_PROTOCOL_GUID \

{0x665E3FF6,0x46CC,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D
}

Protocol Interface Structure
typedef struct {

EFI_BDS_ENTRY Entry;
} EFI_BDS_ARCH_PROTOCOL;

Parameters
Entry

The entry point to BDS. See the Entry() function description. This call does not
take any parameters, and the return value can be ignored. If it returns, then the
dispatcher must be invoked again, if it never returns, then an operating system or a
system utility have been invoked.

Description
The EFI_BDS_ARCH_PROTOCOL transfers control from DXE to an operating system or a system
utility. If there are not enough drivers initialized when this protocol is used to access the required
boot device(s), then this protocol should add drivers to the dispatch queue and return control back
to the dispatcher. Once the required boot devices are available, then the boot device can be used to
load and invoke an OS or a system utility.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 167

EFI_BDS_ARCH_PROTOCOL.Entry()

Summary
Performs Boot Device Selection (BDS) and transfers control from the DXE Foundation to the
selected boot device. The implementation of the boot policy must follow the rules outlined in the
Boot Manager chapter of the EFI 1.10 Specification. This boot policy allows for flexibility, so the
platform vendor will typically customize the implementation of this service.

Prototype
typedef
VOID
(EFIAPI *EFI_BDS_ENTRY) (

IN EFI_BDS_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_BDS_ARCH_PROTOCOL instance.

Description
This function uses policy data from the platform to determine what operating system or system
utility should be loaded and invoked. This function call also optionally uses the user's input to
determine the operating system or system utility to be loaded and invoked. When the DXE
Foundation has dispatched all the drivers on the dispatch queue, this function is called. This
function will attempt to connect the boot devices required to load and invoke the selected operating
system or system utility. During this process, additional firmware volumes may be discovered that
may contain addition DXE drivers that can be dispatched by the DXE Foundation. If a boot device
cannot be fully connected, this function calls the DXE Service Dispatch() to allow the DXE
drivers from any newly discovered firmware volumes to be dispatched. Then the boot device
connection can be attempted again. If the same boot device connection operation fails twice in a
row, then that boot device has failed, and should be skipped. This function should never return.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

168 September 2003 Version 0.9

CPU Architectural Protocol

EFI_CPU_ARCH_PROTOCOL

Summary
Abstracts the processor services that are required to implement some of the DXE services. This
protocol must be produced by a boot service or runtime DXE driver and may only be consumed by
the DXE Foundation and DXE drivers that produce architectural protocols.

GUID
#define EFI_CPU_ARCH_PROTOCOL_GUID \

{0x26baccb1,0x6f42,0x11d4,0xbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_CPU_ARCH_PROTOCOL {

EFI_CPU_FLUSH_DATA_CACHE FlushDataCache;
EFI_CPU_ENABLE_INTERRUPT EnableInterrupt;
EFI_CPU_DISABLE_INTERRUPT DisableInterrupt;
EFI_CPU_GET_INTERRUPT_STATE GetInterruptState;
EFI_CPU_INIT Init;
EFI_CPU_REGISTER_INTERRUPT_HANDLER RegisterInterruptHandler;
EFI_CPU_GET_TIMER_VALUE GetTimerValue;
EFI_CPU_SET_ATTRIBUTES SetMemoryAttributes;
UINT32 NumberOfTimers;
UINT32 DmaBufferAlignment;

} EFI_CPU_ARCH_PROTOCOL;

Parameters
FlushDataCache

Flushes a range of the processor’s data cache. See the FlushDataCache()
function description. If the processor does not contain a data cache, or the data cache
is fully coherent, then this function can just return EFI_SUCCESS. If the processor
does not support flushing a range of addresses from the data cache, then the entire
data cache must be flushed. This function is used by the root bridge I/O abstractions
to flush data caches for DMA operations.

EnableInterrupt

Enables interrupt processing by the processor. See the EnableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

DisableInterrupt

Disables interrupt processing by the processor. See the DisableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 169

GetInterruptState

Retrieves the processor’s current interrupt state. See the GetInterruptState()
function description.

Init

Generates an INIT on the processor. See the Init() function description. This
function may be used by the EFI_RESET Protocol depending upon a specified boot
path. If a processor cannot programmatically generate an INIT without help from
external hardware, then this function returns EFI_UNSUPPORTED.

RegisterInterruptHandler

Associates an interrupt service routine with one of the processor’s interrupt vectors.
See the RegisterInterruptHandler() function description. This function is
typically used by the EFI_TIMER_ARCH_PROTOCOL to hook the timer interrupt in
a system. It can also be used by the debugger to hook exception vectors.

GetTimerValue

Returns the value of one of the processor’s internal timers. See the
GetTimerValue() function description.

SetMemoryAttributes

Attempts to set the attributes of a memory region. See the
SetMemoryAttributes() function description.

NumberOfTimers

The number of timers that are available in a processor. The value in this field is a
constant that must not be modified after the CPU Architectural Protocol is installed.
All consumers must treat this as a read-only field.

DmaBufferAlignment

The size, in bytes, of the alignment required for DMA buffer allocations. This is
typically the size of the largest data cache line in the platform. This value can be
determined by looking at the data cache line sizes of all the caches present in the
platform, and returning the largest. This is used by the root bridge I/O abstraction
protocols to guarantee that no two DMA buffers ever share the same cache line. The
value in this field is a constant that must not be modified after the CPU Architectural
Protocol is installed. All consumers must treat this as a read-only field.

Description
The EFI_CPU_ARCH_PROTOCOL is used to abstract processor-specific functions from the DXE
Foundation. This includes flushing caches, enabling and disabling interrupts, hooking interrupt
vectors and exception vectors, reading internal processor timers, resetting the processor, and
determining the processor frequency.

The GCD memory space map is initialized by the DXE Foundation based on the contents of the
HOB list. The HOB list contains the capabilities of the different memory regions, but it does not
contain their current attributes. The DXE driver that produces the EFI_CPU_ARCH_PROTOCOL
is responsible for maintaining the current attributes of the memory regions visible to the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

170 September 2003 Version 0.9

This means that the DXE driver that produces the EFI_CPU_ARCH_PROTOCOL must seed the
GCD memory space map with the initial state of the attributes for all the memory regions visible to
the processor. The DXE Service SetMemorySpaceAttributes() allows the attributes of a
memory range to be modified. The SetMemorySpaceAttributes() DXE Service is
implemented using the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL.

To initialize the state of the attributes in the GCD memory space map, the DXE driver that
produces the EFI_CPU_ARCH_PROTOCOL must call the DXE Service
SetMemorySpaceAttributes() for all the different memory regions visible to the processor
passing in the current attributes. This, in turn, will call back to the SetMemoryAttributes()
service of the EFI_CPU_ARCH_PROTOCOL, and all of these calls must return EFI_SUCCESS,
since the DXE Foundation is only requesting that the attributes of the memory region be set to their
current settings. This will force the current attributes in the GCD memory space map to be set to
these current settings. After this initialization is complete, the next call to the DXE Service
GetMemorySpaceMap() will correctly show the current attributes of all the memory regions.
In addition, any future calls to the DXE Service SetMemorySpaceAttributes() will in turn
call the EFI_CPU_ARCH_PROTOCOL so see of those attributes can be modified, and if they can,
the GCD memory space map will be updated accordingly.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 171

EFI_CPU_ARCH_PROTOCOL.FlushDataCache()

Summary
Flushes a range of the processor’s data cache. If the processor does not contain a data cache, or the
data cache is fully coherent, then this function can just return EFI_SUCCESS. If the processor
does not support flushing a range of addresses from the data cache, then the entire data cache must
be flushed. This function is used by the root bridge I/O abstractions to flush caches for DMA
operations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_FLUSH_DATA_CACHE) (

IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS Start,
IN UINT64 Length,
IN EFI_CPU_FLUSH_TYPE FlushType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Start

The beginning physical address to flush from the processor’s data cache.

Length

The number of bytes to flush from the processor’s data cache. This function may
flush more bytes than Length specifies depending upon the granularity of the flush
operation that the processor supports.

FlushType

Specifies the type of flush operation to perform. Type EFI_CPU_FLUSH_TYPE is
defined in “Related Definitions” below.

Description
This function flushes the range of addresses from Start to Start+Length from the processor's
data cache. If Start is not aligned to a cache line boundary, then the bytes before Start to the
preceding cache line boundary are also flushed. If Start+Length is not aligned to a cache line
boundary, then the bytes past Start+Length to the end of the next cache line boundary are also
flushed. If the address range is flushed, then EFI_SUCCESS is returned. If the address range
cannot be flushed, then EFI_DEVICE_ERROR is returned. If the processor does not support the
flush type specified by FlushType, then EFI_UNSUPPORTED is returned. The FlushType of
EfiCpuFlushTypeWriteBackInvalidate must be supported. If the data cache is fully
coherent with all DMA operations, then this function can just return EFI_SUCCESS. If the

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

172 September 2003 Version 0.9

processor does not support flushing a range of the data cache, then the entire data cache can be
flushed.

Related Definitions
typedef enum {

EfiCpuFlushTypeWriteBackInvalidate,
EfiCpuFlushTypeWriteBack,
EfiCpuFlushTypeInvalidate,
EfiCpuMaxFlushType

} EFI_CPU_FLUSH_TYPE;

Status Codes Returned
EFI_SUCCESS The address range from Start to Start+Length was flushed

from the processor’s data cache.

EFI_UNSUPPORTED The processor does not support the cache flush type specified by
FlushType.

EFI_DEVICE_ERROR The address range from Start to Start+Length could not
be flushed from the processor's data cache.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 173

EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()

Summary
Enables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_ENABLE_INTERRUPT) (

IN EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function enables interrupt processing by the processor. If interrupts are enabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS Interrupts are enabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be enabled on the processor.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

174 September 2003 Version 0.9

EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()

Summary
Disables interrupt processing by the processor. This function is used to implement the Boot
Services RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_DISABLE_INTERRUPT) (

IN EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function disables interrupt processing by the processor. If interrupts are disabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS Interrupts are disabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be disabled on the processor.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 175

EFI_CPU_ARCH_PROTOCOL.GetInterruptState()

Summary
Retrieves the processor’s current interrupt state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_INTERRUPT_STATE) (

IN EFI_CPU_ARCH_PROTOCOL *This,
OUT BOOLEAN *State
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

State

A pointer to the processor’s current interrupt state. Set to TRUE if interrupts are
enabled and FALSE if interrupts are disabled.

Description
This function retrieves the processor’s current interrupt state a returns it in State. If interrupts are
currently enabled, then TRUE is returned. If interrupts are currently disabled, then FALSE is
returned. If State is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise,
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The processor’s current interrupt state was returned in State.

EFI_INVALID_PARAMETER State is NULL.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

176 September 2003 Version 0.9

EFI_CPU_ARCH_PROTOCOL.Init()

Summary
Generates an INIT on the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_INIT) (

IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_CPU_INIT_TYPE InitType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InitType

The type of processor INIT to perform. Type EFI_CPU_INIT_TYPE is defined in
“Related Definitions” below.

Description
This function generates an INIT on the processor. If this function succeeds, then the processor will
be reset, and control will not be returned to the caller. If InitType is not supported by this
processor, or the processor cannot programmatically generate an INIT without help from external
hardware, then EFI_UNSUPPORTED is returned. If an error occurs attempting to generate an
INIT, then EFI_DEVICE_ERROR is returned.

Related Definitions
typedef enum {

EfiCpuInit,
EfiCpuMaxInitType

} EFI_CPU_INIT_TYPE;

Status Codes Returned
EFI_SUCCESS The processor INIT was performed. This return code should never

be seen.

EFI_UNSUPPORTED The processor INIT operation specified by InitType is not
supported by this processor.

EFI_DEVICE_ERROR The processor INIT failed.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 177

EFI_CPU_ARCH_PROTOCOL. RegisterInterruptHandler()

Summary
Registers a function to be called from the processor interrupt handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_REGISTER_INTERRUPT_HANDLER) (

IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InterruptType

Defines which interrupt or exception to hook. Type EFI_EXCEPTION_TYPE and
the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the EFI 1.10 Specification.

InterruptHandler

A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler will be
uninstalled. Type EFI_CPU_INTERRUPT_HANDLER is defined in “Related
Definitions” below.

Description
The RegisterInterruptHandler() function registers and enables the handler specified by
InterruptHandler for a processor interrupt or exception type specified by
InterruptType. If InterruptHandler is NULL, then the handler for the processor
interrupt or exception type specified by InterruptType is uninstalled. The installed handler is
called once for each processor interrupt or exception.

If the interrupt handler is successfully installed or uninstalled, then EFI_SUCCESS is returned.

If InterruptHandler is not NULL, and a handler for InterruptType has already been
installed, then EFI_ALREADY_STARTED is returned.

If InterruptHandler is NULL, and a handler for InterruptType has not been installed,
then EFI_INVALID_PARAMETER is returned.

If InterruptType is not supported, then EFI_UNSUPPORTED is returned.

The EFI_CPU_ARCH_PROTOCOL implementation of this function must handle saving and
restoring system context to the system context record around calls to the interrupt handler. It must

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

178 September 2003 Version 0.9

also perform the necessary steps to return to the context that was interrupted by the interrupt. No
chaining of interrupt handlers is allowed.

Related Definitions
typedef
VOID
(*EFI_CPU_INTERRUPT_HANDLER) (

IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
);

InterruptType

Defines the type of interrupt or exception that occurred on the processor. This
parameter is processor architecture specific. The type EFI_EXCEPTION_TYPE and
the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the EFI 1.10 Specification.

SystemContext

A pointer to the processor context when the interrupt occurred on the processor.
Type EFI_SYSTEM_CONTEXT is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL of the EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The handler for the processor interrupt was successfully installed or

uninstalled.

EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for
InterruptType was previously installed.

EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
InterruptType was not previously installed.

EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 179

EFI_CPU_ARCH_PROTOCOL.GetTimerValue()

Summary
Returns a timer value from one of the processor's internal timers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_TIMER_VALUE) (

IN EFI_CPU_ARCH_PROTOCOL *This,
IN UINT32 TimerIndex,
OUT UINT64 *TimerValue,
OUT UINT64 *TimerPeriod OPTIONAL
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

TimerIndex

Specifies which processor timer is to be returned in TimerValue. This parameter
must be between 0 and NumberOfTimers-1.

TimerValue

Pointer to the returned timer value.

TimerPeriod

A pointer to the amount of time that passes in femtoseconds (10-15) for each
increment of TimerValue. If TimerValue does not increment at a predictable
rate, then 0 is returned. The amount of time that has passed between two calls to
GetTimerValue() can be calculated with the formula (TimerValue2 –
TimerValue1) * TimerPeriod. This parameter is optional and may be NULL.

Description
This function reads the processor timer specified by TimerIndex and returns it in
TimerValue. If TimerValue is NULL, then EFI_INVALID_PARAMETER is returned. If
TimerPeriod is not NULL, then the amount of time that passes in femtoseconds(10-15) for each
increment if TimerValue is returned in TimerPeriod. If the timer does not run at a
predictable rate, then a TimerPeriod of 0 is returned. If TimerIndex does not specify a valid
timer in this processor, then EFI_INVALID_PARAMETER is returned. The valid range for
TimerIndex is 0..NumberOfTimers-1. If the processor does not contain any readable timers,
then this function returns EFI_UNSUPPORTED. If an error occurs attempting to read one of the
processor's timers, then EFI_DEVICE_ERROR is returned.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

180 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The processor timer value specified by TimerIndex was

returned in TimerValue.

EFI_INVALID_PARAMETER TimerValue is NULL.

EFI_INVALID_PARAMETER TimerIndex is not valid.

EFI_UNSUPPORTED The processor does not have any readable timers.

EFI_DEVICE_ERROR An error occurred attempting to read one of the processor's timers.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 181

EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

Summary
Attempts to set the attributes for a memory range.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_SET_MEMORY_ATTRIBUTES) (

IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the EFI 1.10 Specification.

Length

The size in bytes of the memory region.

Attributes

The bit mask of attributes to set for the memory region. See the EFI Boot Service
GetMemoryMap() for the set of legal attribute bits.

Description
This function modifies the attributes for the memory region specified by BaseAddress and
Length from their current attributes to the attributes specified by Attributes. If this
modification of attributes succeeds, then EFI_SUCCESS is returned.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

182 September 2003 Version 0.9

If there are not enough system resources available to modify the attributes of the memory range,
then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the
memory resource range specified by BaseAddress and
Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource
range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by
BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 183

Metronome Architectural Protocol

EFI_METRONOME_ARCH_PROTOCOL

Summary
Used to wait for ticks from a known time source in a platform. This protocol may be used to
implement a simple version of the Stall() Boot Service. This protocol must be produced by a
boot service or runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_METRONOME_ARCH_PROTOCOL_GUID \

{0x26baccb2,0x6f42,0x11d4,0xbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_METRONOME_ARCH_PROTOCOL {

EFI_METRONOME_WAIT_FOR_TICK WaitForTick;
UINT32 TickPeriod;

} EFI_METRONOME_ARCH_PROTOCOL;

Parameters
WaitForTick

Waits for a specified number of ticks from a known time source in the platform. See
the WaitForTick() function description. The actual time passed between entry
of this function and the first tick is between 0 and TickPeriod 100 nS units. To
guarantee that at least TickPeriod time has elapsed, wait for two ticks.

TickPeriod

The period of platform’s known time source in 100 nS units. This value on any
platform must be at least 10 uS, and must not exceed 200 uS. The value in this field
is a constant that must not be modified after the Metronome architectural protocol is
installed. All consumers must treat this as a read-only field.

Description
This protocol provides access to a known time source in the platform to the DXE Foundation. The
DXE Foundation uses this known time source to produce DXE Foundation services that require
calibrated delays.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

184 September 2003 Version 0.9

EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

Summary
Waits for a specified number of ticks from a known time source in a platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_METRONOME_WAIT_FOR_TICK) (

IN EFI_METRONOME_ARCH_PROTOCOL *This,
IN UINT32 TickNumber
);

Parameters
This

The EFI_METRONOME_ARCH_PROTOCOL instance.

TickNumber

Number of ticks to wait.

Description
The WaitForTick() function waits for the number of ticks specified by TickNumber from a
known time source in the platform. If TickNumber of ticks are detected, then EFI_SUCCESS is
returned. The actual time passed between entry of this function and the first tick is between 0 and
TickPeriod 100 nS units. If you want to guarantee that at least TickPeriod time has elapsed,
wait for two ticks. This function waits for a hardware event to determine when a tick occurs. It is
possible for interrupt processing, or exception processing to interrupt the execution of the
WaitForTick() function. Depending on the hardware source for the ticks, it is possible for a
tick to be missed. This function cannot guarantee that ticks will not be missed. If a timeout occurs
waiting for the specified number of ticks, then EFI_TIMEOUT is returned.

Status Codes Returned
EFI_SUCCESS The wait for the number of ticks specified by TickNumber

succeeded.

EFI_TIMEOUT A timeout occurred waiting for the specified number of ticks.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 185

Monotonic Counter Architectural Protocol

EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

Summary
Provides the services required to access the system’s monotonic counter. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID \

{0x1da97072,0xbddc,0x4b30,0x99,0xf1,0x72,0xa0,0xb5,0x6f,0xff,0x2a
}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetNextHighMonotonicCount() field of the EFI Runtime Services Table
and the GetNextMonotonicCount() field of the EFI Boot Services Table. See Services -
Runtime Services and Services - Boot Services for details on these services. After the field of the
EFI Runtime Services Table and the field of the EFI Boot Services Table have been initialized, the
driver must install the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that
the monotonic counter services are now available and that the DXE Foundation must update the 32-
bit CRC of the EFI Runtime Services Table and the 32-bit CRC of the EFI Boot Services Table.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

186 September 2003 Version 0.9

Real Time Clock Architectural Protocol

EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL

Summary
Provides the services required to access a system’s real time clock hardware. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID \

{0x27CFAC87,0x46CC,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D
}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetTime(), SetTime(), GetWakeupTime(), and SetWakeupTime()
fields of the EFI Runtime Services Table. See Services - Runtime Services for details on these
services. After the four fields of the EFI Runtime Services Table have been initialized, the driver
must install the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID on a new handle with a
NULL interface pointer. The installation of this protocol informs the DXE Foundation that the real
time clock–related services are now available and that the DXE Foundation must update the 32-bit
CRC of the EFI Runtime Services Table.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 187

Reset Architectural Protocol

EFI_RESET_ARCH_PROTOCOL

Summary
Provides the service required to reset a platform. This protocol must be produced by a runtime
DXE driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_RESET_ARCH_PROTOCOL_GUID \

{0x27CFAC88,0x46CC,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D
}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the ResetSystem() field of the EFI Runtime Services Table. See Services -
Runtime Services for details on this service. After this field of the EFI Runtime Services Table has
been initialized, the driver must install the EFI_RESET_ARCH_PROTOCOL_GUID on a new
handle with a NULL interface pointer. The installation of this protocol informs the DXE
Foundation that the reset system service is now available and that the DXE Foundation must update
the 32-bit CRC of the EFI Runtime Services Table.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

188 September 2003 Version 0.9

Runtime Architectural Protocol

Runtime Architectural Protocol
The following topics provide a detailed description of the EFI_RUNTIME_ARCH_PROTOCOL.
The DXE Foundation contains no runtime code, so all runtime code is contained in DXE
Architectural Protocols. This is due to the fact that runtime code must be callable in physical or
virtual mode. The Runtime Architectural Protocol contains the EFI runtime services that are
callable only in physical mode. The Runtime Architectural Protocol can be thought of as the
runtime portion of the DXE Foundation.

The Runtime Architectural Protocol contains support for transition of runtime drivers from physical
mode calling to virtual mode calling. A driver that is loaded before the Runtime Architectural
Protocol is loaded can not be transitioned to virtual mode. Thus any Runtime Architectural Protocol
that produces services that are callable in virtual mode must depend on the
EFI_RUNTIME_ARCH_PROTOCOL_GUID.

EFI_RUNTIME_ARCH_PROTOCOL

Summary
Allows the runtime functionality of the DXE Foundation to be contained in a separate driver. It also
provides hooks for the DXE Foundation to export information that is needed at runtime. As such,
this protocol provides services to the DXE Foundation to manage runtime drivers and events. This
protocol also implies that the runtime services required to transition to virtual mode,
SetVirtualAddressMap() and ConvertPointer(), have been registered into the EFI
Runtime Table in the EFI System Partition. This protocol must be produced by a runtime DXE
driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_RUNTIME_ARCH_PROTOCOL_GUID \

{0x96d08253,0x8483,0x11d4,0xbc,0xf1,0x0,0x80,0xc7,
0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_RUNTIME_ARCH_PROTOCOL {

EFI_RUNTIME_REGISTER_IMAGE RegisterImage;
EFI_RUNTIME_REGISTER_EVENT RegisterEvent;

} EFI_RUNTIME_ARCH_PROTOCOL;

Parameters
RegisterImage

Registers a runtime image so it can be converted to virtual mode if the EFI Runtime
Services SetVirtualAddressMap() is called. See the RegisterImage()
function description.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 189

RegisterEvent

Registers an event than needs to be notified at runtime. See the
RegisterEvent() function description.

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the SetVirtualAddressMap() and ConvertPointer() fields of the EFI
Runtime Services Table and the CalculateCrc32() field of the EFI Boot Services Table. See
Services - Runtime Services and Services - Boot Services for details on these services. After the
two fields of the EFI Runtime Services Table and the one field of the EFI Boot Services Table have
been initialized, the driver must install the EFI_RUNTIME_ARCH_PROTOCOL_GUID on a new
handle with an EFI_RUNTIME_ARCH_PROTOCOL interface pointer. The installation of this
protocol informs the DXE Foundation that the virtual memory services and the 32-bit CRC services
are now available, and the DXE Foundation must update the 32-bit CRC of the EFI Runtime
Services Table and the 32-bit CRC of the EFI Boot Services Table.

All runtime DXE Foundation services are provided by the EFI_RUNTIME_ARCH_PROTOCOL.
This includes the support for registering runtime images that must be fixed up again when a
transition is made from physical mode to virtual mode. This protocol also supports all events that
are defined to fire at runtime. This protocol also contains a CRC-32 function that will be used by
the DXE Foundation as a boot service. The EFI_RUNTIME_ARCH_PROTOCOL needs the CRC-
32 function when a transition is made from physical mode to virtual mode and the EFI System
Table and EFI Runtime Table are fixed up with virtual pointers.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

190 September 2003 Version 0.9

EFI_RUNTIME_ARCH_PROTOCOL.RegisterImage()

Summary
Register a runtime image that is callable in virtual mode so it can be fixed up during a
SetVirtualAddressMap() call.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RUNTIME_REGISTER_IMAGE) (

IN struct _EFI_RUNTIME_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS ImageBase,
IN UINTN ImageSize,
IN VOID *RelocationData
);

Parameters
This

The EFI_RUNTIME_ARCH_PROTOCOL instance.

ImageBase

Start of image that has been loaded in memory. It is either a pointer to the DOS or PE
header of the image. Type EFI_PHYSICAL_ADDRESS is defined in the
AllocatePages() function description in the EFI 1.10 Specification.

ImageSize

Size in bytes of the image.

RelocationData

Information about the fix-ups that were performed on ImageBase when it was
loaded into memory. This information is needed when the virtual mode fix-ups are
reapplied so that data that has been programmatically updated will not be fixed up. If
code updates a global variable the code is responsible for fixing up the variable for
virtual mode.

Description
When a SetVirtualAddressMap() is performed all the runtime images loaded by DXE must
be fixed up with the new virtual address map. To facilitate this, the Runtime Architectural Protocol
needs to be informed of every runtime driver that is registered. All the runtime images loaded by
DXE should be registered with this service by the DXE Foundation when
ExitBootServices() is called. The images that are registered with this service must have
successfully been loaded into memory with the Boot Service LoadImage(). As a result, no
parameter checking needs to be performed.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 191

Status Codes Returned
EFI_SUCCESS The ImageBase has been registered.

EFI_OUT_OF_RESOURCES There are not enough resources to register ImageBase.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

192 September 2003 Version 0.9

EFI_RUNTIME_ARCH_PROTOCOL.RegisterEvent()

Summary
Register an EFI event that needs to be signaled at runtime

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RUNTIME_REGISTER_EVENT) (

IN struct _EFI_RUNTIME_ARCH_PROTOCOL *This,
IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN VOID *NotifyContext,
IN EFI_EVENT *Event
);

Parameters
This

The EFI_RUNTIME_ARCH_PROTOCOL instance.

Type

The same as Type passed into CreateEvent().

NotifyTpl

The same as NotifyTpl passed into CreateEvent(). Type EFI_TPL is
defined in RaiseTPL() in the EFI 1.10 Specification.

NotifyFunction

The same as NotifyFunction passed into CreateEvent(). Type
EFI_EVENT_NOTIFY is defined in the CreateEvent() function description.

NotifyContext

The same as NotifyContext passed into CreateEvent().

Event

The EFI_EVENT returned by CreateEvent(). Event must be in runtime
memory. Type EFI_EVENT is defined in the CreateEvent() function
description.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 193

Description
This function is used to support the required runtime events. Currently only runtime events of type
EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE needs to be registered with this service.
All the runtime events that exist in the DXE Foundation should be registered with this service when
ExitBootServices() is called. All the events that are registered with this service must have
been created with the Boot Service CreateEvent(). As a result, no parameter checking needs
to be performed.

Status Codes Returned
EFI_SUCCESS The Event has been registered.

EFI_OUT_OF_RESOURCES There are not enough resources to register Event.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

194 September 2003 Version 0.9

Security Architectural Protocol

EFI_SECURITY_ARCH_PROTOCOL

Summary
Abstracts security-specific functions from the DXE Foundation. This protocol must be produced
by a boot service or runtime DXE driver and may only be consumed by the DXE Foundation and
any other DXE drivers that need to validate the authentication of files.

GUID
#define EFI_SECURITY_ARCH_PROTOCOL_GUID \

{0xA46423E3,0x4617,0x49f1,0xB9,0xFF,0xD1,0xBF,0xA9,0x11,0x58,0x39
}

Protocol Interface Structure
typedef struct _EFI_SECURITY_ARCH_PROTOCOL {

EFI_SECURITY_FILE_AUTHENTICATION_STATE
FileAuthenticationState;

} EFI_SECURITY_ARCH_PROTOCOL;

Parameters
FileAuthenticationState

This service is called upon fault with respect to the authentication of a section of a
file. See the FileAuthenticationState() function description.

Description
The EFI_SECURITY_ARCH_PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes locking flash upon failure to authenticate, attestation logging, and
other exception operations.

The driver that produces the EFI_SECURITY_ARCH_PROTOCOL may also optionally install the
EFI_SECURITY_POLICY_PROTOCOL_GUID onto a new handle with a NULL interface. The
existence of this GUID in the protocol database means that the GUIDed Section Extraction Protocol
should authenticate the contents of an Authentication Section. The expectation is that the GUIDed
Section Extraction protocol will look for the existence of the
EFI_SECURITY_POLICY_PROTOCOL_GUID in the protocol database. If it exists, then the
publication thereof is taken as an injunction to attempt an authentication of any section wrapped in
an Authentication Section. See the Intel® Platform Innovation Framework for EFI Firmware
Volume Specification for details on the GUIDed Section Extraction Protocol and Authentication
Sections.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 195

Additional GUID Definitions
#define EFI_SECURITY_POLICY_PROTOCOL_GUID \

{0x78E4D245,0xCD4D,0x4a05,0xA2,0xBA,0x47,0x43,0xE8,0x6C,0xFC,0xAB
}

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

196 September 2003 Version 0.9

EFI_SECURITY_ARCH_PROTOCOL. FileAuthenticationState()

Summary
The DXE Foundation uses this service to check the authentication status of a file. This allows the
system to execute a platform-specific policy in response the different authentication status values.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SECURITY_FILE_AUTHENTICATION_STATE) (

IN EFI_SECURITY_ARCH_PROTOCOL *This,
IN UINT32 AuthenticationStatus,
IN EFI_DEVICE_PATH_PROTOCOL *File
);

Parameters
This

The EFI_SECURITY_ARCH_PROTOCOL instance.

AuthenticationStatus

The authentication type returned from the Section Extraction Protocol. See the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification for
details on this type.

File

A pointer to the device path of the file that is being dispatched. This will optionally
be used for logging. Type EFI_DEVICE_PATH_PROTOCOL is defined Chapter 8
of the EFI 1.10 Specification.

Description
The EFI_SECURITY_ARCH_PROTOCOL (SAP) is used to abstract platform-specific policy from
the DXE Foundation response to an attempt to use a file that returns a given status for the
authentication check from the section extraction protocol.

The possible responses in a given SAP implementation may include locking flash upon failure to
authenticate, attestation logging for all signed drivers, and other exception operations. The File
parameter allows for possible logging within the SAP of the driver.

If File is NULL, then EFI_INVALID_PARAMETER is returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is safe for the DXE Foundation to use, then EFI_SUCCESS is
returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use under any circumstances,
then EFI_ACCESS_DENIED is returned.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 197

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use right now, but it might be
possible to use it at a future time, then EFI_SECURITY_VIOLATION is returned.

Status Codes Returned
EFI_SUCCESS The file specified by File did authenticate, and the platform policy

dictates that the DXE Foundation may use File.

EFI_INVALID_PARAMETER File is NULL.

EFI_SECURITY_VIOLATION The file specified by File did not authenticate, and the platform
policy dictates that File should be placed in the untrusted state.
A file may be promoted from the untrusted to the trusted state at a
future time with a call to the Trust() DXE Service.

EFI_ACCESS_DENIED The file specified by File did not authenticate, and the platform
policy dictates that File should not be used for any purpose.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

198 September 2003 Version 0.9

Status Code Architectural Protocol

EFI_STATUS_CODE_ARCH_PROTOCOL

Summary
Provides the service required to report a status code to the platform firmware. This protocol must
be produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_STATUS_CODE_ARCH_PROTOCOL_GUID \

{0xd98e3ea3,0x6f39,0x4be4,0x82,0xce,0x5a,0x89,0xc,0xcb,0x2c,0x95}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the ReportStatusCode() field of the EFI Runtime Services Table. See Service -
Runtime Services for details on this service. After this field of the EFI Runtime Services Table has
been initialized, the driver must install the EFI_STATUS_CODE_ARCH_PROTOCOL_GUID on a
new handle with a NULL interface pointer. The installation of this protocol informs the DXE
Foundation that the status code service is now available, and the DXE Foundation must update the
32-bit CRC of the EFI Runtime Services Table.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 199

Timer Architectural Protocol

EFI_TIMER_ARCH_PROTOCOL

Summary
Used to set up a periodic timer interrupt using a platform specific timer, and a processor-specific
interrupt vector. This protocol enables the use of the SetTimer() Boot Service. This protocol
must be produce by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation or DXE drivers that produce other DXE Architectural Protocols.

GUID
#define EFI_TIMER_ARCH_PROTOCOL_GUID \

{0x26baccb3,0x6f42,0x11d4,0xbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_TIMER_ARCH_PROTOCOL {

EFI_TIMER_REGISTER_HANDLER RegisterHandler;
EFI_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
EFI_TIMER_GET_TIMER_PERIOD GetTimerPeriod;
EFI_TIMER_GENERATE_SOFT_INTERRUPT GenerateSoftInterrupt;

} EFI_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that will be called each time the timer interrupt fires. See the
RegisterHandler() function description. TimerPeriod defines the
minimum time between timer interrupts, so TimerPeriod will also be the
minimum time between calls to the registered handler.

SetTimerPeriod

Sets the period of the timer interrupt in 100 nS units. See the SetTimerPeriod()
function description. This function is optional and may return
EFI_UNSUPPORTED. If this function is supported, then the timer period will be
rounded up to the nearest supported timer period.

GetTimerPeriod

Retrieves the period of the timer interrupt in 100 nS units. See the
GetTimerPeriod() function description.

GenerateSoftInterrupt

Generates a soft timer interrupt that simulates the firing of the timer interrupt. This
service can be used to invoke the registered handler if the timer interrupt has been

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

200 September 2003 Version 0.9

masked for a period of time. See the GenerateSoftInterrupt() function
description.

Description
This protocol provides the services to initialize a periodic timer interrupt and to register a handler
that is called each time the timer interrupt fires. It may also provide a service to adjust the rate of
the periodic timer interrupt. When a timer interrupt occurs, the handler is passed the amount of
time that has passed since the previous timer interrupt.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 201

EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is called each timer the timer interrupt fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_REGISTER_HANDLER) (

IN EFI_TIMER_ARCH_PROTOCOL *This,
IN EFI_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when a timer interrupt fires. This function executes at
EFI_TPL_HIGH_LEVEL. The DXE Foundation will register a handler for the
timer interrupt, so it can know how much time has passed. This information is used
to signal timer based events. NULL will unregister the handler. Type
EFI_TIMER_NOTIFY is defined in "Related Definitions" below.

Description
This function registers the handler NotifyFunction so it is called every time the timer interrupt
fires. It also passes the amount of time since the last handler call to the NotifyFunction. If
NotifyFunction is NULL, then the handler is unregistered. If the handler is registered, then
EFI_SUCCESS is returned. If the processor does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler when a handler
is already registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to
unregister a handler when a handler is not registered, then EFI_INVALID_PARAMETER is
returned. If an error occurs attempting to register the NotifyFunction with the timer interrupt,
then EFI_DEVICE_ERROR is returned.

Related Definitions
typedef
VOID
(EFIAPI *EFI_TIMER_NOTIFY) (

IN UINT64 Time
);

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

202 September 2003 Version 0.9

Time

Time since the last timer interrupt in 100 ns units. This will typically be
TimerPeriod, but if a timer interrupt is missed, and the
EFI_TIMER_ARCH_PROTOCOL driver can detect missed interrupts, then Time
will contain the actual amount of time since the last interrupt.

Status Codes Returned
EFI_SUCCESS The timer handler was registered.

EFI_UNSUPPORTED The platform does not support timer interrupts.

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously
registered.

EFI_DEVICE_ERROR The timer handler could not be registered.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 203

EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_SET_TIMER_PERIOD) (

IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The rate to program the timer interrupt in 100 nS units. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If the timer is programmable,
then the timer period will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the timer interrupts will be
disabled.

Description
This function adjusts the period of timer interrupts to the value specified by TimerPeriod. If the
timer period is updated, then EFI_SUCCESS is returned. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If an error occurs while attempting to
update the timer period, then the timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt is disabled.
This is not the same as disabling the processor's interrupts. Instead, it must either turn off the timer
hardware, or it must adjust the interrupt controller so that a processor interrupt is not generated
when the timer interrupt fires.

Status Codes Returned
EFI_SUCCESS The timer period was changed.

EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.

EFI_DEVICE_ERROR The timer period could not be changed due to a device error.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

204 September 2003 Version 0.9

EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GET_TIMER_PERIOD) (

IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 *TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the timer period to retrieve in 100 ns units. If 0 is returned, then the
timer is currently disabled.

Description
This function retrieves the period of timer interrupts in 100 ns units, returns that value in
TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod is NULL, then
EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is returned, then the timer is
currently disabled.

Status Codes Returned
EFI_SUCCESS The timer period was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 205

EFI_TIMER_ARCH_PROTOCOL. GenerateSoftInterrupt()

Summary
Generates a soft timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GENERATE_SOFT_INTERRUPT) (

IN EFI_TIMER_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

Description
This function generates a soft timer interrupt. If the platform does not support soft timer interrupts,
then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned. If a handler has
been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler() service,
then a soft timer interrupt will be generated. If the timer interrupt is enabled when this service is
called, then the registered handler will be invoked. The registered handler should not be able to
distinguish a hardware-generated timer interrupt from a software-generated timer interrupt.

Status Codes Returned
EFI_SUCCESS The soft timer interrupt was generated.

EFI_UNSUPPORTED The platform does not support the generation of soft timer
interrupts.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

206 September 2003 Version 0.9

Variable Architectural Protocol

EFI_VARIABLE_ARCH_PROTOCOL

Summary
Provides the services required to get and set environment variables. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_ARCH_PROTOCOL_GUID \

{0x1e5668e2,0x8481,0x11d4,0xbc,0xf1,0x0,0x80,0xc7,0x3c,0x88,0x81}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetVariable(), GetNextVariableName(), and SetVariable() fields
of the EFI Runtime Services Table. See Services - Runtime Services for details on these services.
After the three fields of the EFI Runtime Services Table have been initialized, the driver must
install the EFI_VARIABLE_ARCH_PROTOCOL_GUID on a new handle with a NULL interface
pointer. The installation of this protocol informs the DXE Foundation that the read-only and the
volatile environment variable related services are now available and that the DXE Foundation must
update the 32-bit CRC of the EFI Runtime Services Table. The full complement of environment
variable services are not available until both this protocol and
EFI_VARIABLE_WRITE_ARCH_PROTOCOL are installed. DXE drivers that require read-only
access or read/write access to volatile environment variables must have this architectural protocol
in their dependency expressions. DXE drivers that require write access to nonvolatile environment
variables must have the EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency
expressions.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 207

Variable Write Architectural Protocol

EFI_VARIABLE_WRITE_ARCH_PROTOCOL

Summary
Provides the services required to set nonvolatile environment variables. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID \

{0x6441f818,0x6362,0x4e44,0xb5,0x70,0x7d,0xba,0x31,0xdd,0x24,0x
53}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver may update the
SetVariable() field of the EFI Runtime Services Table. See Services - Runtime Services for
details on this service. After the EFI Runtime Services Table has been initialized, the driver must
install the EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID on a new handle with a NULL
interface pointer. The installation of this protocol informs the DXE Foundation that the write
services for nonvolatile environment variables are now available and that the DXE Foundation
must update the 32-bit CRC of the EFI Runtime Services Table. The full complement of
environment variable services are not available until both this protocol and
EFI_VARIABLE_ARCH_PROTOCOL are installed. DXE drivers that require read-only access or
read/write access to volatile environment variables must have the
EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency expressions. DXE drivers that
require write access to nonvolatile environment variables must have this architectural protocol in
their dependency expressions.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

208 September 2003 Version 0.9

Watchdog Timer Architectural Protocol

Watchdog Timer Architectural Protocol
This following topics provide a detailed description of the
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. This protocol is used to implement the Boot
Service SetWatchdogTimer(). The watchdog timer may be implemented in software using
Boot Services, or it may be implemented with specialized hardware. The protocol provides a
service to register a handler when the watchdog timer fires and a service to set the amount of time
to wait before the watchdog timer is fired.

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL

Summary
Used to program the watchdog timer and optionally register a handler when the watchdog timer
fires. This protocol must be produced by a boot service or runtime DXE driver and may be
consumed only by the DXE Foundation or DXE drivers that produce other DXE Architectural
Protocols. If a platform wishes to perform a platform-specific action when the watchdog timer
expires, then the DXE driver that contains the implementation of the
EFI_BDS_ARCH_PROTOCOL should use this protocol's RegisterHandler() service.

GUID
#define EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID \

{0x665E3FF5,0x46CC,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D
}

Protocol Interface Structure
typedef struct _EFI_WATCHDOG_TIMER_ARCH_PROTOCOL {

EFI_WATCHDOG_TIMER_REGISTER_HANDLER RegisterHandler;
EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD GetTimerPeriod;

} EFI_WATCHDOG_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that is invoked when the watchdog timer fires. See the
RegisterHandler() function description.

SetTimerPeriod

Sets the amount of time in 100 ns units to wait before the watchdog timer is fired.
See the SetTimerPeriod() function description. If this function is supported,
then the watchdog timer period will be rounded up to the nearest supported watchdog
timer period.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 209

GetTimerPeriod

Retrieves the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. See the GetTimerPeriod() function description.

Description
This protocol provides the services required to implement the Boot Service
SetWatchdogTimer(). It provides a service to set the amount of time to wait before firing the
watchdog timer, and it also provides a service to register a handler that is invoked when the
watchdog timer fires. This protocol can implement the watchdog timer by using the event and
timer Boot Services, or it can make use of custom hardware. When the watchdog timer fires,
control will be passed to a handler if one has been registered. If no handler has been registered, or
the registered handler returns, then the system will be reset by calling the Runtime Service
ResetSystem().

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

210 September 2003 Version 0.9

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. RegisterHandler()

Summary
Registers a handler that is to be invoked when the watchdog timer fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_REGISTER_HANDLER) (

IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN EFI_WATCHDOG_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when the watchdog timer fires. If this is NULL, then the handler
will be unregistered. Type EFI_WATCHDOG_TIMER_NOTIFY is defined in
"Related Definitions" below.

Description
This function registers a handler that is to be invoked when the watchdog timer fires. By default,
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL will call the Runtime Service ResetSystem()
when the watchdog timer fires. If a NotifyFunction is registered, then NotifyFunction
will be called before the Runtime Service ResetSystem() is called. If NotifyFunction is
NULL, then the watchdog handler is unregistered. If a watchdog handler is registered, then
EFI_SUCCESS is returned. If an attempt is made to register a handler when a handler is already
registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to uninstall a
handler when a handler is not installed, then return EFI_INVALID_PARAMETER.

Related Definitions
typedef
VOID
(EFIAPI *EFI_WATCHDOG_TIMER_NOTIFY) (

IN UINT64 Time
);

Time

The time in 100 ns units that has passed since the watchdog timer was armed. For
the notify function to be called, this must be greater than TimerPeriod.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 211

Status Codes Returned
EFI_SUCCESS The watchdog timer handler was registered or unregistered.

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously
registered.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

212 September 2003 Version 0.9

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. SetTimerPeriod()

Summary
Sets the amount of time in the future to fire the watchdog timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD) (

IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The amount of time in 100 nS units to wait before the watchdog timer is fired. If
TimerPeriod is zero, then the watchdog timer is disabled.

Description
This function sets the amount of time to wait before firing the watchdog timer to TimerPeriod
100 nS units. If TimerPeriod is zero, then the watchdog timer is disabled.

Status Codes Returned
EFI_SUCCESS The watchdog timer has been programmed to fire in Time 100 nS

units.

EFI_DEVICE_ERROR A watchdog timer could not be programmed due to a device error.

Draft for Review DXE Architectural Protocols

Version 0.9 September 2003 213

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. GetTimerPeriod()

Summary
Retrieves the amount of time in 100 ns units that the system will wait before firing the watchdog
timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD) (

IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
OUT UINT64 *TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the amount of time in 100 nS units that the system will wait before the
watchdog timer is fired. If TimerPeriod of zero is returned, then the watchdog
timer is disabled.

Description
This function retrieves the amount of time the system will wait before firing the watchdog timer.
This period is returned in TimerPeriod, and EFI_SUCCESS is returned. If TimerPeriod is
NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The amount of time that the system will wait before firing the

watchdog timer was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

214 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 215

13
Returned Status Codes

Returned Status Codes
EFI interfaces return an EFI_STATUS code. The topics in this book discuss the following:

• Ranges of EFI_STATUS codes
• Success codes
• Error codes
• Warning codes

Error codes also have their highest bit set, so all error codes have negative values. The range of
status codes that have the highest bit set and the next to highest bit clear are reserved for use by
EFI. The range of status codes that have both the highest bit set and the next to highest bit set are
reserved for use by OEMs.

Success and warning codes have their highest bit clear, so all success and warning codes have
positive values. The range of status codes that have both the highest bit clear and the next to
highest bit clear are reserved for use by EFI. The range of status code that have the highest bit clear
and the next to highest bit set are reserved for use by OEMs.

EFI_STATUS Codes Ranges
The following table lists the ranges of EFI_STATUS codes.

IA-32 Range
Itanium® Architecture
Range Description

0x00000000-

0x3fffffff

0x0000000000000000-

0x3fffffffffffffff
Success and warning codes reserved for use by EFI. See
EFI_STATUS Success Codes (High Bit Clear) and
EFI_STATUS Warning Codes (High Bit Clear) for valid
values in this range.

0x40000000-

0x7fffffff

0x4000000000000000-

0x7fffffffffffffff
Success and warning codes reserved for use by OEMs.

0x80000000-

0xbfffffff

0x8000000000000000-

0xbfffffffffffffff
Error codes reserved for use by EFI. See EFI_STATUS
Error Codes (High Bit Set) for valid values for this range.

0xc0000000-

0xffffffff

0xc000000000000000-

0xffffffffffffffff
Error codes reserved for use by OEMs.

EFI_STATUS Success Codes (High Bit Clear)
The following table lists the success codes for EFI_STATUS.

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

216 September 2003 Version 0.9

EFI_STATUS Error Codes (High Bit Set)
The following table lists the error codes for EFI_STATUS.

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data.
The required buffer size is returned in the appropriate
parameter when this error occurs.

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing the
operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_NOT_AVAILABLE_YET 28 The service is not available yet because one of its
dependencies has not been satisfied yet.

EFI_UNLOAD_IMAGE 29 If this value is returned by an EFI image, then the image
should be unloaded.

Draft for Review Returned Status Codes

Version 0.9 September 2003 217

EFI_STATUS Warning Codes (High Bit Clear)
The following table lists the warning codes for EFI_STATUS.

Mnemonic Value Description

EFI_WARN_UNKOWN_GLYPH 1 The Unicode string contained one or more characters that
the device could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not
flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was
truncated to the buffer size.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

218 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 219

14
Dependency Expression Grammar

Dependency Expression Grammar
This topic contains an example BNF grammar for a DXE driver dependency expression compiler
that converts a dependency expression source file into a dependency section of a DXE driver stored
in a firmware volume.

Example Dependency Expression BNF Grammar
<depex> ::= BEFORE <guid>

| AFTER <guid>
| SOR <bool>
| <bool>

<bool> ::= <bool> AND <term>
| <bool> OR <term>
| <term>

<term> ::= NOT <factor>
| <factor>

<factor> ::= <bool>
| TRUE
| FALSE
| GUID
| END

<guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
<hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
<hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’

<hex32> ::= <hexprefix> <hexvalue>
<hex16> ::= <hexprefix> <hexvalue>
<hex8> ::= <hexprefix> <hexvalue>
<hexprefix>::= ‘0’ ‘x’

| ‘0’ ‘X’
<hexvalue> ::= <hexdigit> <hexvalue>

| <hexdigit>
<hexdigit> ::= [0-9]

| [a-f]
| [A-F]

Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

Driver Execution Environment Draft for Review
Core Interface Specification (DXE CIS)

220 September 2003 Version 0.9

//
// Source
//
EFI_CPU_IO_PROTOCOL_GUID AND EFI_CPU_ARCH_PROTOCOL_GUID END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_CPU_IO_PROTOCOL_GUID

88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11 EFI_CPU_ARCH_PROTOCOL_GUID

bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

//
// Source
//
AFTER (EFI_CPU_DRIVER_FILE_NAME_GUID) END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 01 AFTER
0x01 : 93 e5 7b 98 43 16 0b 45 EFI_CPU_DRIVER_FILE_NAME_GUID

be 4f 8f 07 66 6e 36 56
0x11 : 08 END

//
// Source
//
SOR EFI_CPU_IO_PROTOCOL_GUID END

//
// Opcodes, Operands and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 09 SOR
0x01 : 02 PUSH
0x02 : b1 cc ba 26 42 6f d4 11 EFI_CPU_IO_PROTOCOL_GUID

bc e7 00 80 c7 3c 88 81
0x12 : 03 END

	Intel® Platform Innovation Framework for EFI Driver Execution Environment Core Interface Specification (DXE CIS)
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Organization of the DXE CIS
	Target Audience
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Instruction Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Overview
	Driver Execution Environment (DXE) Phase
	EFI System Table
	Overview
	EFI Boot Services Table
	EFI Runtime Services Table
	DXE Services Table

	DXE Foundation
	DXE Dispatcher
	DXE Drivers
	DXE Architectural Protocols

	3. Boot Manager
	Boot Manager

	4. EFI System Table
	Introduction
	EFI Image Entry Point
	EFI_IMAGE_ENTRY_POINT

	EFI Table Header
	EFI System Table
	EFI Boot Services Table
	EFI_BOOT_SERVICES

	EFI Runtime Services Table
	EFI_RUNTIME_SERVICES

	EFI Configuration Table
	DXE Services Table
	DXE_SERVICES

	EFI Image Entry Point Examples
	EFI Application Example
	Non-EFI Driver Model Example (Resident in Memory)
	Non-EFI Driver Model (Nonresident in Memory)
	EFI Driver Model Example
	EFI Driver Model Example (Unloadable)
	EFI Driver Model Example (Multiple Instances)

	5. Services - Boot Services
	EFI 1.10 Boot Services
	Extensions to EFI 1.10 Boot Services
	CreateEvent()
	LoadImage()

	6. Services - Runtime Services
	EFI 1.10 Runtime Services
	Additional Runtime Services
	Status Code Services
	ReportStatusCode()

	7. Services - DXE Services
	Introduction
	Global Coherency Domain Services
	Overview
	Global Coherency Domain (GCD) Services Overview
	GCD Memory Resources
	GCD I/O Resources

	Global Coherency Domain Services
	AddMemorySpace()
	AllocateMemorySpace()
	FreeMemorySpace()
	RemoveMemorySpace()
	GetMemorySpaceDescriptor()
	SetMemorySpaceAttributes()
	GetMemorySpaceMap()
	AddIoSpace()
	AllocateIoSpace()
	FreeIoSpace()
	RemoveIoSpace()
	GetIoSpaceDescriptor()
	GetIoSpaceMap()

	Dispatcher Services
	Dispatcher Services
	Dispatch()
	Schedule()
	Trust()
	ProcessFirmwareVolume()

	8. Protocols - Device Path Protocol
	Introduction
	Firmware Volume File Path Media Device Path

	9. DXE Foundation
	Introduction
	Hand-Off Block (HOB) List
	DXE Foundation Data Structures
	Required DXE Foundation Components
	Handing Control to DXE Dispatcher
	DXE Foundation Entry Point
	DXE Foundation Entry Point
	DXE_ENTRY_POINT

	Dependencies
	EFI Boot Services Table
	EFI Boot Services Dependencies
	SetTimer()
	RaiseTPL()
	RestoreTPL()
	SetWatchdogTimer()
	Stall()
	GetNextMonotonicCount()
	CalculateCrc32()

	EFI Runtime Services Table
	EFI Runtime Services Dependencies
	GetVariable()
	GetNextVariableName()
	SetVariable()
	GetTime()
	SetTime()
	GetWakeupTime()
	SetWakeupTime()
	SetVirtualAddressMap()
	ConvertPointer()
	ResetSystem()
	GetNextHighMonotonicCount()
	ReportStatusCode()

	DXE Services Table
	DXE Services Dependencies
	GetMemorySpaceDescriptor()
	SetMemorySpaceAttributes()
	GetMemorySpaceMap()

	HOB Translations
	HOB Translations Overview
	PHIT HOB
	CPU HOB
	Resource Descriptor HOBs
	Firmware Volume HOBs
	Memory Allocation HOBs
	GUID Extension HOBs

	10. DXE Dispatcher
	Introduction
	Requirements
	The a priori File
	EFI_APRIORI_GUID

	Dependency Expressions
	Dependency Expressions Overview
	Dependency Expression Instruction Set
	BEFORE
	AFTER
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END
	SOR

	Dependency Expression with No Dependencies
	Empty Dependency Expressions
	Dependency Expression Reverse Polish Notation (RPN)

	DXE Dispatcher State Machine
	DXE Dispatcher State Machine
	Example Orderings

	Security Considerations

	11. DXE Drivers
	Introduction
	Classes of DXE Drivers
	Basic
	Early DXE Drivers
	DXE Drivers That Follow the EFI Driver Model

	Additional
	Additional Classifications

	12. DXE Architectural Protocols
	Introduction
	Boot Device Selection (BDS) Architectural Protocol
	EFI_BDS_ARCH_PROTOCOL
	EFI_BDS_ARCH_PROTOCOL.Entry()

	CPU Architectural Protocol
	EFI_CPU_ARCH_PROTOCOL
	EFI_CPU_ARCH_PROTOCOL.FlushDataCache()
	EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.GetInterruptState()
	EFI_CPU_ARCH_PROTOCOL.Init()
	EFI_CPU_ARCH_PROTOCOL. RegisterInterruptHandler()
	EFI_CPU_ARCH_PROTOCOL.GetTimerValue()
	EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

	Metronome Architectural Protocol
	EFI_METRONOME_ARCH_PROTOCOL
	EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

	Monotonic Counter Architectural Protocol
	EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

	Real Time Clock Architectural Protocol
	EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL

	Reset Architectural Protocol
	EFI_RESET_ARCH_PROTOCOL

	Runtime Architectural Protocol
	Runtime Architectural Protocol
	EFI_RUNTIME_ARCH_PROTOCOL
	EFI_RUNTIME_ARCH_PROTOCOL.RegisterImage()
	EFI_RUNTIME_ARCH_PROTOCOL.RegisterEvent()

	Security Architectural Protocol
	EFI_SECURITY_ARCH_PROTOCOL
	EFI_SECURITY_ARCH_PROTOCOL. FileAuthenticationState()

	Status Code Architectural Protocol
	EFI_STATUS_CODE_ARCH_PROTOCOL

	Timer Architectural Protocol
	EFI_TIMER_ARCH_PROTOCOL
	EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL. GenerateSoftInterrupt()

	Variable Architectural Protocol
	EFI_VARIABLE_ARCH_PROTOCOL

	Variable Write Architectural Protocol
	EFI_VARIABLE_WRITE_ARCH_PROTOCOL

	Watchdog Timer Architectural Protocol
	Watchdog Timer Architectural Protocol
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. RegisterHandler()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. SetTimerPeriod()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. GetTimerPeriod()

	13. Returned Status Codes
	Returned Status Codes
	EFI_STATUS Codes Ranges
	EFI_STATUS Success Codes (High Bit Clear)
	EFI_STATUS Error Codes (High Bit Set)
	EFI_STATUS Warning Codes (High Bit Clear)

	14. Dependency Expression Grammar
	Dependency Expression Grammar
	Example Dependency Expression BNF Grammar
	Sample Dependency Expressions

