
 Draft for Review

Intel® Platform Innovation Framework
for EFI

ACPI Specification

Draft for Review

Version 0.9
April 1, 2004

ACPI Specification Draft for Review

ii April 2004 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2000–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 April 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 4/1/04

ACPI Specification Draft for Review

iv April 2004 Version 0.9

 Draft for Review

Version 0.9 April 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Scope.. 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 9
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
ACPI Terms... 11
ACPI Overview.. 12
Rationale... 13

Rationale ..13
Name Space Collisions .. 13
ACPI Specification Compliance.. 13
Complexity of Dynamically Generated AML... 14
Limitations of Modular AML.. 14

Requirements.. 14
ACPI Support Driver.. 14

Introduction .. 14
Dependency Resolution ... 14
ACPI Support Protocol ... 15

ACPI Platform Driver... 15
Introduction .. 15
Dependency Resolution ... 15
Driver Execution... 16
Platform Policy ... 16

System Sleep States... 17
Considerations for the Itanium® Processor Family... 18

ACPI Compliance... 18
Operating System Implementations ... 18

3 Code Definitions... 19
Introduction ... 19
ACPI Support Protocol ..19

EFI_ACPI_SUPPORT_PROTOCOL.. 19
EFI_ACPI_SUPPORT_PROTOCOL.GetAcpiTable()... 21
EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable() ... 23
EFI_ACPI_SUPPORT_PROTOCOL.PublishTables().. 25

ACPI Specification Draft for Review

vi April 2004 Version 0.9

Tables
Table 2-1. Supported ACPI System Sleep States .. 17

 Draft for Review

Version 0.9 April 2004 7

1
Introduction

Overview
This specification describes one design for supporting the Advanced Configuration and Power
Interface Specification (hereafter referred to as the “ACPI specification”), revisions 1.0b and 2.0, in
the Intel® Platform Innovation Framework for EFI (hereafter referred to as the "Framework"). The
ACPI specification details system configuration and power management information.
This specification does the following:
• Describes the basic components of the Framework ACPI design, the ACPI support driver, and

the ACPI platform driver
• Describes additional ACPI considerations for the Itanium® processor family
• Provides code definitions for the ACPI Support Protocol and other ACPI-related type

definitions that are architecturally required by the Intel® Platform Innovation Framework for
EFI Architecture Specification

See Industry Specifications in the Framework master help system for the URL for the ACPI
specification.

Scope
This specification provides a design for supporting the ACPI 1.0b and 2.0 specifications in a
Framework environment.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

ACPI Specification Draft for Review

8 April 2004 Version 0.9

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

 Draft for Review Introduction

Version 0.9 April 2004 9

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

ACPI Specification Draft for Review

10 April 2004 Version 0.9

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 April 2004 11

2
Design Discussion

ACPI Terms
The following terms are used throughout this specification or else are not widely used in other
Framework specifications. See the master Glossary in the master help system for definitions of
additional terms.

ACPI
Advanced Configuration and Power Interface.

AML
ACPI Machine Language.

APIC
Advanced Programmable Interrupt Controller.

ASL
ACPI Source Language.

DSDT
Differentiated System Description Table.

EBDA
Extended BIOS Data Area.

FACS
Firmware ACPI Control Structure.

FADT
Fixed ACPI Description Table.

GPIO
General Purpose Input/Output.

MADT
Multiple APIC Description Table.

PMI
Platform Management Interrupt.

RSD_PTR
Root System Description Pointer.

RSDT
Root System Description Table.

ACPI Specification Draft for Review

12 April 2004 Version 0.9

SMI
System Management Interrupt.

SSDT
Secondary System Description Table.

Sx
(Where x is a whole number from 1 to 5). Indicates the sleeping state of the system. See the
ACPI industry specification for more information.

XSDT
Extended System Description Table.

ACPI Overview
The Framework ACPI design separates common ACPI requirements from platform-specific ACPI
requirements into different drivers to do the following:
• Maximize the reuse of support code
• Isolate the code that must be rewritten on a per-platform basis
To make an ACPI-compliant system, firmware must produce ACPI tables and report the ACPI
memory usage to the operating system’s EFI memory map reporting mechanisms (or via the
INT 15 function E820h for legacy systems). The firmware may also be required to implement the
following:
• Some processor-architecture-specific (System Management Interrupt [SMI]/Platform

Management Interrupt [PMI]) code to support transitioning between legacy and ACPI modes
• A boot path to support S2/S3 resume
This specification describes a mechanism to accomplish these things. It divides the tasks into the
following two components:
• ACPI support driver
• ACPI platform driver
The ACPI platform driver could actually be composed of several disparate drivers, but for the sake
of this specification, it is assumed to be a single driver.
The ACPI support driver is generic and should be usable in widely varying platforms without
modification. Its primary function is to control where in memory the ACPI tables are copied and
to ensure that all ACPI tables have correct address links and checksums. The ACPI support driver
also does the following:
• Creates generic tables such as the Root System Description Pointer (RSD_PTR), Root System

Description Table (RSDT), and Extended System Description Table (XSDT) structures (see the
ACPI industry specification for descriptions of these structures)

• Must publish the EFI_ACPI_SUPPORT_PROTOCOL, which is used by the ACPI platform
driver

 Draft for Review Design Discussion

Version 0.9 April 2004 13

All platform differentiation with respect to ACPI occurs in the ACPI platform driver. The ACPI
platform driver is responsible for the following:
• Producing all ACPI tables other than RSD_PTR, RSDT, and XSDT
• Installing any required SMI/PMI handlers
• Supporting any platform-specific sleep state requirements
• Generating the hardware signature
The ACPI platform driver may optionally publish interfaces to support sleep states.

Rationale

Rationale
The Framework strives to allow independent development and linking of components. While it
would be nice to extend this idea to the ACPI name space and the ACPI Machine Language (AML)
code, there are at least four reasons why this approach is not desirable:
• Name space collisions
• Compliance with the ACPI specification
• The complexity of dynamically generated AML
• Limitations of modular AML
The following topics discuss these reasons in detail.

Name Space Collisions
Names in the ACPI name space are only four characters long. Each name must be unique in
its scope. There is no way to guarantee that names will be unique if ACPI Machine Language
(AML) is provided from different sources. The ACPI Source Language (ASL) code must be
available to ensure there are no name collisions.

ACPI Specification Compliance
ACPI is intended to replace nearly all BIOS interfaces for configuration, power management, and
most things that are platform specific in nature. As of version 1.0b of the ACPI specification, many
areas remain unclear. The specification is conspicuously quiet when it comes to defining roles and
responsibilities for BIOS and operating system code. Because of these weaknesses, ACPI
compliance is essentially the intersection of the following:
• ACPI specification
• Output of the Microsoft* ACPI Source Language (ASL) compiler
• Microsoft* ACPI implementation requirements for the Windows* 98 and Windows 2000

operating systems
This intersection results in a constantly evolving set of requirements to which firmware writers
need to conform. The Framework ACPI design allows for updating ACPI tables individually
without requiring a full BIOS update.
If ACPI Machine Language (AML) was provided as precompiled modules from different sources,
as Driver Execution Environment (DXE) drivers are, it would be impossible to make changes to
meet the changing requirements for ACPI compliance.

ACPI Specification Draft for Review

14 April 2004 Version 0.9

Complexity of Dynamically Generated AML
One possible solution to the problem would be to dynamically generate the name space from meta
data that was provided in lieu of ACPI Machine Language (AML). The most immediate problem
with this approach is that the code that is required to generate and parse an ACPI name space is
large and complex. Because the Framework is intended to be system firmware, available space for
code storage will be very limited.

Limitations of Modular AML
Because the ACPI name space is inherently platform specific, it is nearly impossible to write
correct ACPI Source Language (ASL) code without knowing the platform specifics.
For example: A silicon vendor could supply a chunk of ACPI Machine Language (AML) in the
form of a Secondary System Description Table (SSDT), which could be loaded into the name
space. However, the vendor could not possibly know how their chip was hooked up. What events
were connected to which General Purpose Input/Output (GPIO)? The complexity of these
problems likely makes this solution impossible.

Requirements
This Framework ACPI design must meet the following requirements:
• All aspects of this design must be compliant with the following:

⎯ Intel® Platform Innovation Framework for EFI Architecture Specification, version 0.9
⎯ Intel® Platform Innovation Framework for EFI Driver Execution Environment Core

Interface Specification (DXE CIS), version 0.9
⎯ ACPI 2.0 specification

• The design must enable size efficiency, code reuse, and maintainability.
• It must be possible to access platform policy data from ACPI Machine Language (AML) code.

For example, selections the user has made from a Setup application can be taken into account
by control methods.

ACPI Support Driver

Introduction
The ACPI support driver is responsible for managing the memory map with regard to the ACPI
tables. It also provides checksum services, creates some required tables (Root System Description
Pointer [RSD_PTR], Root System Description Table [RSDT], Extended System Description Table
[XSDT]), and updates Fixed ACPI Description Table (FADT) addresses.
The ACPI support driver also publishes the ACPI tables in the EFI Configuration Table.

Dependency Resolution
The ACPI support driver requires only DXE Services. In other words, dispatch of the ACPI support
driver is not dependent on any particular platform protocols.

 Draft for Review Design Discussion

Version 0.9 April 2004 15

ACPI Support Protocol
See Code Definitions for the definition of the ACPI Support Protocol, which is the protocol
definition that applies to the ACPI support driver.

ACPI Platform Driver

Introduction
The ACPI platform driver loads the ACPI tables. The driver relies on services provided by
EFI_ACPI_SUPPORT_PROTOCOL, which is defined in Code Definitions.
ACPI requires a hardware signature to be generated by the Framework and written into the
Firmware ACPI Control Structure (FACS) during each boot and each S4 resume. The hardware
signature is intended to be a flag to the operating system that some hardware configuration has
changed and the operating system must perform a cold boot. If the operating system is resuming
from the S4 sleep state and it detects that the hardware signature has changed, it may abort the
resume and do a cold boot instead. There is no meaning to the actual value of the signature, only
whether it has changed from the previous boot. The ACPI platform driver is responsible for
creating the hardware signature.
In addition, the ACPI platform driver must install any System Management Interrupt (SMI) or
Platform Management Interrupt (PMI) support that is required by the ACPI specification. If the S3
sleep state is supported, the ACPI platform driver may also produce
EFI_BOOT_SCRIPT_SAVE_PROTOCOL; see the Intel® Platform Innovation Framework for EFI
Boot Script Specification for more details.
The ACPI platform driver may also complete additional platform-specific tasks. An example is
updating the status of processors in the Multiple APIC Description Table (MADT) structure.
The driver is also responsible for determining which versions of the ACPI tables should be
published by the ACPI support driver.

Dependency Resolution
The ACPI platform driver requires the following to allocate memory for the tables and update
tables accordingly:
• DXE Services
• EFI_ACPI_SUPPORT_PROTOCOL
The ACPI platform driver may require some chipset code to switch into and out of ACPI mode.
Because this code is likely to run in System Management Mode (SMM) context, it must be linked
(or loaded) in such a way as to allow it to exist in the SMM address range. Furthermore, it must not
call out into non-SMM code.
The ACPI platform driver may have additional platform-specific requirements for obtaining
information to determine table contents.

ACPI Specification Draft for Review

16 April 2004 Version 0.9

Driver Execution

Driver Execution
The ACPI platform driver is responsible for loading all tables that are required for a platform ACPI
implementation using the EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable() API.
Driver execution impacts the following:
• Table Selection
• SMI Implications

Table Selection
A given implementation of the ACPI platform driver may have a variety of ACPI tables from which
to choose when adding tables. It must be able to determine the correct set of tables to report. For
example, whether or not to load a Secondary System Description Table (SSDT) for S3 support
might depend on an environment variable that is used to toggle S3 support for the system.

SMI Implications
IA-32 platforms may require System Management Interrupt (SMI) code for switching between
legacy and ACPI operation modes and for handling global locks. This code will be registered with
the SMI handler using the SMI protocol. Itanium®-based systems may require similar Platform
Management Interrupt (PMI) code.

Platform Policy
In the context of the Framework, ACPI platform policy is defined to be any data that is to be
consumed by either of the following:
• ACPI initialization code
• The ACPI Machine Language (AML) control methods themselves
For example, if a user disables a COM port using the Framework Setup utility, the _STA control
method for that COM port could report it as "not present" to the operating system. This method
would enable selections that were made in the Framework Setup utility to remain true in the context
of the operating system. The policy data in this case is "COM port disabled."
Typically, this type of information has been stored in CMOS. Unless the chipset hardware provides
an alternate access mechanism to read CMOS, there may be synchronization issues between the
AML code and other software that is attempting to access CMOS at the same time.
Instead of using CMOS to report these types of details to AML code, the Framework will use a
Secondary System Description Table (SSDT) to communicate policy data. The ACPI platform
driver will load the correct SSDT. AML that needs access to policy data will reference this policy
data using its name in the name space.

 Draft for Review Design Discussion

Version 0.9 April 2004 17

System Sleep States
The table below describes the ACPI system sleep states that are supported in the Framework ACPI
design.

Table 2-1. Supported ACPI System Sleep States
ACPI Sleep
State

Supported?

Notes

Pre-sleep: The Framework supports _PTS as necessary. S1 Yes

Post-sleep:
• The Framework supports _WAK as necessary.

• Nothing is required from the Framework. Waking is completely under
the control of the operating system because resume occurs in the
operating system rather than the reset vector.

S2 Yes Same as S3.

S3 Yes S3 resume is a special boot path that causes the Pre-EFI Initialization (PEI)
phase to take different actions compared to a normal boot. Information must
be saved by DXE during a normal boot that is retrieved by PEI during an S3
resume boot. See the Intel® Platform Innovation Framework for EFI S3
Resume Boot Path Specification for details on implementing S3 support.

Pre-sleep: The Framework supports _PTS as necessary. S4 Yes

Post-sleep:
• The Framework calculates the hardware signature.
• Normal POST except the EFI boot manager is bypassed and the

operating system loader is invoked directly.
• The Framework supports _WAK as necessary.

S4BIOS No Framework support for S4BIOS is not defined.

ACPI Specification Draft for Review

18 April 2004 Version 0.9

Considerations for the Itanium® Processor Family

ACPI Compliance
Early versions of ACPI implementations for the Itanium® processor family supported a
specification called IA64 Extensions to the ACPI specification. This specification is obsolete and
has been superceded by the ACPI 2.0 specification. Framework-compliant systems must not
support the IA64 Extensions to the ACPI specification and instead must comply with the ACPI 2.0
specification.

Operating System Implementations

Operating System Implementations
There are several differences between the operating system implementations for the Itanium®
processor family, which are all EFI aware, and the operating system implementations for IA-32
processors, of which some are EFI aware and others are not. The differences that are encountered
depend on whether the target operating system is EFI aware. Following are some of these
differences, which are also described in the next topics:
• The mechanism for locating the RSD_PTR structure
• The mechanism for retrieving the memory map

Locating the RSD_PTR Structure
Legacy (non-EFI-aware IA-32) operating systems locate the Root System Description Pointer
(RSD_PTR) structure by scanning for the RSD_PTR signature in the Extended BIOS Data Area
(EBDA) and BIOS areas between E0000h and FFFFF on 16-byte boundaries.
EFI-aware operating systems (all Itanium®-based systems and EFI-aware IA-32) locate the
RSD_PTR structure by looking up its physical address in the EFI System Table. The ACPI support
driver is responsible for updating the EFI System Table.

Retrieving the Memory Map
Non-EFI-aware operating systems use the INT 15h function E820h to retrieve the system memory
map. This retrieval must be handled by the legacy operating system boot code.
EFI-aware operating systems use the EFI Boot Service GetMemoryMap() to retrieve the system
memory map. EFI Boot Services will properly report this information with no additional actions
being required of the ACPI support driver.

 Draft for Review

Version 0.9 April 2004 19

3
Code Definitions

Introduction
This section contains the basic definitions for the Framework ACPI design. The following protocol
is defined in this section:
• EFI_ACPI_SUPPORT_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following data type can be found in
"Related Definitions" of the parent function definition:
• EFI_ACPI_TABLE_VERSION

ACPI Support Protocol

EFI_ACPI_SUPPORT_PROTOCOL

Summary
This protocol provides some basic services to support publishing ACPI system tables. The
services handle many of the more mundane tasks that are required to publish a set of tables. The
services will do the following:
• Generate common tables.
• Update the table links.
• Ensure that tables are properly aligned and use correct types of memory.
• Update checksum values and IDs.
• Complete the final installation of the tables.

GUID
#define EFI_ACPI_SUPPORT_GUID \
{ 0xdbff9d55, 0x89b7, 0x46da, 0xbd, 0xdf, 0x67, 0x7d, 0x3d, 0xc0,
0x24, 0x1d }

Protocol Interface Structure
typedef struct _EFI_ACPI_SUPPORT_PROTOCOL {
 EFI_ACPI_GET_ACPI_TABLE GetAcpiTable;
 EFI_ACPI_SET_ACPI_TABLE SetAcpiTable;
 EFI_ACPI_PUBLISH_TABLES PublishTables;
} EFI_ACPI_SUPPORT_PROTOCOL;

ACPI Specification Draft for Review

20 April 2004 Version 0.9

Parameters
GetAcpiTable

Returns a table specified by an index if it exists. See the GetAcpiTable()
function description.

SetAcpiTable

Adds, removes, or updates ACPI tables. See the SetAcpiTable() function
description.

PublishTables

Publishes the ACPI tables. See the PublishTables() function description.

Description
The EFI_ACPI_SUPPORT_PROTOCOL is published by the ACPI support driver and contains all
the platform-independent interfaces that are used by the ACPI platform driver. The ACPI support
driver’s primary responsibility is to provide support functionality for the ACPI platform driver.
The ACPI support driver must produce and maintain valid structures for the following:
• Root System Description Pointer (RSD_PTR)
• Root System Description Table (RSDT)
• Extended System Description Table (XSDT)
See the ACPI specification for descriptions of these structures. They must be allocated from
memory of type EfiACPIReclaimMemory. At all times, they must contain up-to-date pointers
to existing tables.
The ACPI support driver maintains a list of tables that belong to each version of ACPI that is
supported. Each version will have RSD_PTR, RSDT, and XSDT structures that are created by the
driver. The one exception is the "none" version, which can be used to add items that do not belong
to one of the other versions. Tables can be added to one or more versions of ACPI.
The ACPI support driver adds the RSD_PTR address to the EFI System Table, with the GUID that
is defined in the ACPI specification, when another module (typically the ACPI platform driver)
calls the EFI_ACPI_SUPPORT_PROTOCOL.PublishTables(). The ACPI support driver
adds the RSD_PTR address to the EFI System Table using the PublishTables() function.

 NOTE
Legacy ACPI operating systems (non-EFI-aware IA-32) search for the RSD_PTR signature, which
is located either in the Extended BIOS Data Area (EBDA) or between E0000 and FFFFF. Legacy
operating system code may have to ensure that RSD_PTR is copied or moved to a proper location.
All physical addresses that are specified in the Fixed ACPI Description Table (FADT) structure
need to be updated to reflect the actual table locations. The FADT needs the address of the
Firmware ACPI Control Structure (FACS) and Differentiated System Description Table (DSDT)
updated in the ACPI 1.0 and ACPI 2.0 portion of the table. The driver will have to update these
addresses as tables are added and removed.

 Draft for Review Code Definitions

Version 0.9 April 2004 21

EFI_ACPI_SUPPORT_PROTOCOL.GetAcpiTable()

Summary
Returns a requested ACPI table.

Prototype
typedef
EFI_STATUS
EFI_BOOTSERVICE
(EFIAPI *EFI_ACPI_GET_ACPI_TABLE) (
 IN EFI_ACPI_SUPPORT_PROTOCOL *This,
 IN INTN Index,
 OUT VOID **Table,
 OUT EFI_ACPI_TABLE_VERSION *Version,
 OUT UINTN *Handle
);

Parameters
This

A pointer to the EFI_ACPI_SUPPORT_PROTOCOL instance.
Index

The zero-based index of the table to retrieve.
Table

Pointer for returning the table buffer.
Version

Updated with the ACPI versions to which this table belongs. Type
EFI_ACPI_TABLE_VERSION is defined in "Related Definitions" below.

Handle

Pointer for identifying the table.

Description
The GetAcpiTable() function returns a buffer containing the ACPI table associated with the
Index that was input. The following structures are not considered elements in the list of ACPI
tables:
• Root System Description Pointer (RSD_PTR)
• Root System Description Table (RSDT)
• Extended System Description Table (XSDT)
The EFI_ACPI_SUPPORT_PROTOCOL instance allocates a buffer for returning a copy of the
table from EFI Boot Services memory, and this buffer must be freed by the caller. Table will not
point to the actual copy of the table.

ACPI Specification Draft for Review

22 April 2004 Version 0.9

Handle is a UINTN that is used to identify the table for use with the
EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable() function. The meaning of the value is
implementation specific and cannot be used as anything more than an identifier for the table.
Version is updated with a bit map containing all the versions of ACPI of which the table
is a member.

Related Definitions
//
// ACPI Version bit map definition:
//
// EFI_ACPI_VERSION_1_0b – ACPI Version 1.0b
// EFI_ACPI_VERSION_2_0 – ACPI Version 2.0
// EFI_ACPI_VERSION_NONE – No ACPI Versions. This might be used
// to create memory-based operation regions or other information
// that is not part of the ACPI “tree” but must still be found
// in ACPI memory space and/or managed by the core ACPI driver.
//
// Note that EFI provides discrete GUIDs for each version of ACPI
// that is supported. It is expected that each EFI GUIDed
// version of ACPI will also have a corresponding bit map
// definition. This allows maintenance of separate ACPI trees
// for each distinctly different version of ACPI.
//

//***
// EFI_ACPI_TABLE_VERSION
//***
#define EFI_ACPI_TABLE_VERSION UINT32

#define EFI_ACPI_TABLE_VERSION_NONE (1 << 0)
#define EFI_ACPI_TABLE_VERSION_1_0B (1 << 1)
#define EFI_ACPI_TABLE_VERSION_2_0 (1 << 2)

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The requested index is too large and a table was not found.

 Draft for Review Code Definitions

Version 0.9 April 2004 23

EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable()

Summary
Used to add, remove, or update ACPI tables.

Prototype
typedef
EFI_STATUS
EFI_BOOTSERVICE
(EFIAPI *EFI_ACPI_SET_ACPI_TABLE) (
 IN EFI_ACPI_SUPPORT_PROTOCOL *This,
 IN VOID *Table OPTIONAL,
 IN BOOLEAN Checksum,
 IN EFI_ACPI_TABLE_VERSION Version,
 IN OUT UINTN *Handle
);

Parameters
This

A pointer to the EFI_ACPI_SUPPORT_PROTOCOL instance.
Table

Pointer to the new table to add or update.
Checksum

If TRUE, indicates that the checksum should be calculated for this table.
Version

Indicates to which version(s) of ACPI the table should be added. Type
EFI_ACPI_TABLE_VERSION is defined in
EFI_ACPI_SUPPORT_PROTOCOL.GetAcpiTable().

Handle

Pointer to the handle of the table to remove or update.

Description
The SetAcpiTable() function adds, updates, or removes ACPI tables. If *Handle is zero and
Table is not NULL, the function will add the table to the ACPI "trees" that are specified by
Version. If *Handle is not zero and Table is not NULL, the table(s) indicated by Handle and
Version will be updated with the new table. If *Handle is not zero and Table is NULL, the
table(s) identified by the handle and Version will be removed. If *Handle is zero and Table is
NULL, EFI_INVALID_PARAMETER will be returned.
All tables that are added must be copied to memory of type EfiACPIReclaimMemory, except
for the Firmware ACPI Control Structure (FACS), which must be of type EfiACPIMemoryNVS.
The FACS must also be aligned on a 64-byte address boundary.

ACPI Specification Draft for Review

24 April 2004 Version 0.9

Checksum values for tables and structures must be calculated and put in place in compliance with
the ACPI specification. Checksum will indicate which tables need their checksums updated.
Additionally, the ACPI support driver must update any tables that it modifies as tables are added
and removed, specifically the following:
• Root System Description Pointer (RSD_PTR)
• Root System Description Table (RSDT)
• Extended System Description Table (XSDT)
• Fixed ACPI Description Table (FADT)
The Version parameter is used to determine in which ACPI version a given table should
be included. The ACPI 1.0b and ACPI 2.0 versions are separate but may contain pointers to
common tables. Version allows the caller to specify which ACPI version should be updated for a
given table.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER *Handle was zero and Table was NULL.

EFI_ABORTED Could not complete the desired action.

 Draft for Review Code Definitions

Version 0.9 April 2004 25

EFI_ACPI_SUPPORT_PROTOCOL.PublishTables()

Summary
Causes one or more versions of the ACPI tables to be published in the EFI system
configuration tables.

Prototype
typedef
EFI_STATUS
EFI_BOOTSERVICE
(EFIAPI *EFI_ACPI_PUBLISH_TABLES) (
 IN EFI_ACPI_SUPPORT_PROTOCOL *This,
 IN EFI_ACPI_TABLE_VERSION Version
);

Parameters
This

A pointer to the EFI_ACPI_SUPPORT_PROTOCOL instance.
Version

Indicates to which version(s) of ACPI that the table should be published. Type
EFI_ACPI_TABLE_VERSION is defined in
EFI_ACPI_SUPPORT_PROTOCOL.GetAcpiTable().

Description
The PublishTables() function installs the ACPI tables for the versions that are specified in
Version. No tables are published for Version equal to EFI_ACPI_VERSION_NONE. Once
published, tables will continue to be updated as tables are modified with
EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable().

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_ABORTED An error occurred and the function could not complete successfully.

	Intel® Platform Innovation Framework for EFI ACPI Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Scope
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	ACPI Terms
	ACPI Overview
	Rationale
	Rationale
	Name Space Collisions
	ACPI Specification Compliance
	Complexity of Dynamically Generated AML
	Limitations of Modular AML

	Requirements
	ACPI Support Driver
	Introduction
	Dependency Resolution
	ACPI Support Protocol

	ACPI Platform Driver
	Introduction
	Dependency Resolution
	Driver Execution
	Driver Execution
	Table Selection
	SMI Implications

	Platform Policy

	System Sleep States
	Considerations for the Itanium® Processor Family
	ACPI Compliance
	Operating System Implementations
	Operating System Implementations
	Locating the RSD_PTR Structure
	Retrieving the Memory Map

	3. Code Definitions
	Introduction
	ACPI Support Protocol
	EFI_ACPI_SUPPORT_PROTOCOL
	EFI_ACPI_SUPPORT_PROTOCOL.GetAcpiTable()
	EFI_ACPI_SUPPORT_PROTOCOL.SetAcpiTable()
	EFI_ACPI_SUPPORT_PROTOCOL.PublishTables()

